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Introduction

The motion of axi-symmetric liquid sheets has rcceived continued attention over the
past century-and-a-half. Much of this attention has been motivated by the relevance of
this configuration to certain spray forming devices. TAYLOR [1]2) summarizes and extends
earlier work on the dynamics of sheets formed by the collision of [rce jets.

The previous analyses have generally regarded the effect of internal viscous shear to be
negligible, although the contribution of external air drag has been treated in some detail [1].
In 1951 Porirsky [2] discussed the shear stresses that arise in spherically symmetric radial
flows as a result of tangential stretching. This study will show the effect of similar stresses
upon the velocity of radially flowing liquid sheets.

1) This work has been supported in part by the College of Agriculture Research Center.
?) Numbers in brackets refer to References, page 352.
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Formulation and Linearized Solution
Let an incompressible liquid of viscosity, », be supplied in an outward radial direction
at velocily, #,, on a boundary at radius, 7,. This would be the approximate result of the
collision of two axial jets of radius, #,, and velocity, u, (see Figure 1).

©

lVELOCITY, u=u

TU: Uo

Figure 1

Configuration of axi-symmetric liquid sheet (special case in which liquid is supplied by colliding jets).

The continuity equation requires that the thickncss, ¢, of the sheet be proportional to
(u7) * in general and equal to u,7%/u» for the colliding jet configuration. The Navier-
Stokes momentum equation:

du d*u 1 du 2%
[ ] (1)

% - =9 |— - - — =
dr? v dr 72

dr

then specifies # = u(r) independently of the continuity equation. We tix the following
boundary conditions on Equation (1)

w(vg) = g and 0 < u < oo when » = 7, . (2)
Under the transtormations:
Vo U r
A="""and p= —
v ¥

Equations (1) and (2) become:

e X i Rl = (1a)
n n
with boundary conditions:
A1) = Re and 0 <. 2 << oo when 5 > 1 (2a)

where Re = uy 7,/v, the Reynolds number of the flow.

A reasonable approximate soluuon for Equation (1a) can be obtained if the nonlinear
term, A Z’, is replaced with Re A’. This should be valid if the velocity is not affected too
strongly by viscosity. Accordingly Equation (la) becomes:
ek AP —7317 i=0. * (3)
n n

This is exactly Frobenius’ equation. Its general solution is:

A" 4

14 Ren
n

A= 4

L p exp (Ren)
n
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The boundary conditions (2a) fix the constants, 4 and B, as Re/(1 - Re) and zcro,
respectively. Thus the linearized result, A, is:

B Re 1+ Ren -
el (L), g
Exact Solution of the Equation of Motion

Under the transformation .
it

A=—2s5+ - 6
FF i (0)
Equation (la) becomes:
1
" - 2 ’ s - 7
k25 s = (7)

which can be integrated once to give the Riccatti equation:

1

£ B2 s gl

s' s (4772)4—(3. (8)
The constant, C, can be evaluated at the boundary, with the help of Equation (6):
Ret—2 Re — 21(1)

= g
# T (9)
Another transformation, namely:
v
§= - (10
7 )
transforms Equation (8) into:
. 1 G
y’ 4 (.Z,,]Z — 4~) Yy = Q (11)

The constant, C, depends upon the unknown initial slope, 4'(1). First let us suppose
that A’(1) is such that C = 0. Equation (11) then becomes ECULER’s equation, whose
general solution,

y = (A4 + Blny) o (12)
can be substituted into Equations (10) and (6) to give:
—28B
e n[A + Blay] (13)
Using the first boundary condition (2a), we find that (B/4) = — Re/2. This solution has a

singularity at 7 = exp (2/Re), and will therefore violate the second boundary condition.
If, on the other hand, C & 0 then Equation (11) is a special form of BESSEL’s equation.

Its general solution is: N -
y = Vnl4 I, (VYCn) + B E, (YCn)]. (14)

Substitution ol this result into Equations (10) and (6) gives the general solution of
Equation (1a): »

AL(JCy) ~ BE, (Cn)

A= — ¢
Ve | anwen s B R, (V¢ n)

(15)

The functions 7,, I,, K,, and K, are all positive and monotonic. Since /[, and I,
increase without bound with their arguments, while K, and K, decrease to zero, we conclude
that 4 must be zero to accommodate the second boundary condition. The applicable
solution is thus:

K, (/C)

-kl (16)
Ky (C )

A=2ycC
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Substitution of the first boundary condition gives the following transcendental equation
for C:
. 7
Re — /¢ 2200 (17)
Ko (/C)

Equations (16) and (17) provide the particular solution to our problem.
The asymptotic behavior of K, and K| is such that 4, as given by Equation (16), very
rapidly approaches its limiting value, Ao, as # increases:

Joo = 2)/C. (18)

Comparison of Exact and Linearized Results

Figure 2 displays typical integral curves for Equation (1a), satisfying the first boundary
condition for Re — 2. The exact solution of the present problem, which we have shown to
be uniquely determined in the form of Equation (16) by the boundary conditions, is
included as a member of this family of solutions. The linearized solution is also displayed
in this figure. Tt compares very well with the exact result, even at this low Reynolds
number.
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-al(i) = 2/3 |-\ .
-\'(1} = 0.70810
PN I (A/8, NEGATIVE)i (A/B. NEGATIVE)
o LINEARIZED SOLUTION
5 ‘ EXACT SOLUT!ON ——
o ~—
@ s\ oo ——— .
w R
. |
0 ———— A ELI9— — —
z 1.0F \
= ) -\'(1) = 0.70818
2 Ay =1 (A/B, POSITIVE)
b (A/8, POSITIVE)
=
a 05 } Re =2 T
C = 035407
o \ L e 1 1 I I ‘
0 ] 2 3 4 5 6 7 8 9
DIMENSIONLESS RADIUS, 7
T'igure 2

Comparison of solutions of the momentum equation.

As a matter of interest, four incorrect values of initial slope are shown. Two of these
result from the use of positive values of A/B in Equation (15), and give solutions that drop
toward negative asymptotic values. Two result from negative values of 4;B and give
solutions that approach positive infinity as 5 approaches the zero of the denominator of
Equation (15).

Figure 3 compares the exact values of Adeo/Re given by Equations (18) and (17) with
thosc given by the linearized equation:

Re?
Except for very low Reynolds numbers, this simple approximation is quite accurate. At
large Reynolds numbers, Equations (19) and (18) both give:
Re — Aoo Uy — Uco ik

A, o MO S 20)
Re %y Re (20
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Comparison of cxact and linearized evaluations of ’100'

The Reynolds number is seldom small in real physical systems. The Reynolds number
of a 1-mm orifice discharging water at 6 m/sec would, for example, be about 3000. The
substitution of glycerin would reduce this figure to about 4.5. In either case the
linearization is quite accurate. So too is Equation (20).
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NOMENCLATURE

A, B arbitrary constants,

C constant of integration, evaluated in Equation (9),

Iy, I, modified Bessel functions of the first kind, of zeroth and first order, respectively,
K,, K, modified Bessel functions of the second kind, of zeroth and first order, respectively,
Re Reynolds namber of the flow, #, 1/, ‘

7 radial coordinate,
s (! — N2,
¢ thickness of sheet,
u velocity of sheet,
Y transformed s, given by Equation (10),
n dimensionless radial coordinate, #/r,,
A dimensionless velocity, u 7y/»,
v kinematic viscosity.
General Subscripts
l denoting a linearized result,

0 denoting evaluation made at inner boundary of sheet,
o denoting an evaluation made as 5 > oc.
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