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The importance of knowing superheated liquid properties, and of locating the liquid spinodal line, is discussed, The 
measurement and prediction of the spinodal line, and the limi ts of isentropic pressure undershoot, are reviewed, Means are 
presented for formulating equations of state and fundamental equations to predict superheated liquid properties and spinodal 
limits, It is shown how the temperature dependence of surface tension can be used to verify p - v - T equations of state, or how 
this dependence can be predicted if the equation of state is known. 

1. Scope 

Today's technology, with its emphasis on miniaturiz­
ing and intensifying thennal processes, steadily de­
mands higher heat fluxes and poses greater dangers of 
sending liquids beyond their boiling points into the 
metastable, or superheated, state. This state poses the 
threat of serious thermohydraulic explosions. Yet we 
know little about its thermal properties, and cannot 
predict process behavior after a liquid becomes super­
heated. Some of the practical situations that require a 
knowledge the limits of liquid superheat, and the physi­
cal properties of superheated liquids, include: 
- Thennohydraulic explosions as might occur in nuclear 

coolant line breaks, liquefied light-hydrocarbon spills, 
or Kraft paper process boiler leaks. 

- Quenching, as occurs in heat treating metals, rewet­
ting nuclear cores, cooling liquid metal ejecta from a 
melted reactor core, or the diagnosis of boiling heat 
transfer. 

- Predicting the behavior of liquids heated beyond 
their boiling points, in nucleate and transition boil­
ing. 

- Estimating how much damage a thermohydraulic ex­
plosion can do. 
Much of the work reviewed here was the result of 

previous inquiries supported by the Electric Power Re­
search Institute. The results developed under EPRI 
support included: a fundamental equation for water in 
the superheated liquid and subcooled vapor states (1,2]; 
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methods for making simplified predictions of property 
information, which can be applied to the full range of 
fluids - water, mercury, nitrogen, etc. [3-5]; and predic­
tions of the depressurizations that might occur in ther­
mohydraulic accidents. (See e.g. refs. [6,7].) 

2. The spinodal limit of liquid superheat 

2.1. The role of the equation of state in defining the 
spinodal line 

Fig. 1 clarifies what happens when a liquid is heated 
beyond its boiling point. It shows real isotherms of a 
fluid on p-v coordinates. All states along an isotherm 
are equilibrium states. When the slope of an isotherm is 
positive, that equilibrium is unstable. When the slope is 
negative, the equilibrium is stable. The spinodal line 
connects the points where the isotherms have zero slope. 
By locating the liquid spinodal line, one specifies the 
absolute limit beyond which a liquid can never be 
superheated. Another feature of this curve is that the 
Gibbs potentials, gf and gg' must be equal in the 
saturated liquid and vapor states. Thus: 

(1) 

The last term vanishes giving the "Gibbs-Maxwell" 
relation, which requires that area A in fig. 1 equals area 
B: 

!,8Vdp = O. 	 (2) 
f 
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Fig. 1. Typical real-gas isotherms. 

For a long time, van der Waals' equation 

RT a 
(3)p = u- b - v 2 ' 

provided the only theoretical knowledge of real fluid 
isotherms. Van der Waals argued, on the basis of molec­
ular behavior, that there is an inherent continuity from 
the liquid to the vapor states. An important feature of 
this equation is that it can be nondimensionalized using 
critical data. Thus: 

8Tr 

Pr = 3v ­
r 

where Pr = 

__ 3 
(4)1 v2 ' 

r 

plpc' etc. The dimensionless van der Waals 
equation suggests the Law of Corresponding States ­
that one equation of state, written in reduced coordi­
nates, should describe all fluids. 

Today, we know that the Law of Corresponding 
States should be written as: 

Pr = f (T" V ' primary molecular parameter, otherr 

molecul ar parameters) (5) 

- The strongest influences in eq. (5) are those of Tr and 
Vr' Indeed the need for any further parameters was 
not clarified until the mid 1950's. 

- The primary molecular parameter is usually taken to 
be Zc; the Riedel factor. ilp (see ref. [8)) ; or the 
Pitzer acentric factor , w (see, e.g. ref. [9]): 

w == -1 - 10glO [ Pr.sa.( Tr = 0.7)]. 

Fig. 2 is a recent Corresponding States correlation [5] 
of the ratio vr/ vg. The use of the Pitzer factor here 
brings data for very different fluids into alignment. 

- Little has been done with secondary molecular 
parameters. Fig. 3 shows how data for molecules with 
high dipole moments deviate slightly from an other­
wise successful correlation of burnout heat fluxes , 
based on the Law of Corresponding States [10]. Thus 
the Law sometimes needs correction when it is ap­
plied to polar molecules. 
An interesting corollary to the preceding results is 

that van der Waals' equation should accurately describe 
any real fluid with Zc' ilR, or w ('.qual to the van der 
Waals' value. We therefore ask if there is any such fluid. 

Fig. 4 shows the raw data that established fig. 2. 
When they are cross-plotted against w (in the inset), all , 
including the van der Waals value , lie on the same 
straight line. Furthermore, vr/vg for mercury 
(w= -0.21) closely approximates that of the van der 
Waals fluid whose w of - 0.302 is only slightly lower. 

The importance of this is that - since van der Waals' 
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Fig. 2. The use of the Pitzer factor to complete a Correspond­
ing States correlation of vf jVg (from ref. [5]). 
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Fig. 3 .Illustration of the failure of polar fluids to conform to a Corresponding States correlation (from ref. [10]). 

equation yields a pair of spinodal lines and it is the 
basis for the Law of Corresponding States - real-fluid 
spinodal lines should also obey the Law of Correspond­
ing states. 
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Fig. 4. Construction of the correlation in fig. 2 illustrating the 
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The van der Waals spinodal lines are obtained by 
setting (3pr/3ur)r= 0 and eliminating Tr between this 
result and the original equation. The result: 

Pr = 3/u~ - 2/u;, (6) 

describes the liquid spinodal for ur < 1 and the vapor 
spinodal for ur > 1. 

2.2. Relation of the spinodal line to the homogeneous 
nucleation limit 

We would like to use measurements of the limiting 
liquid superheat to obtain the location of the spinodal 
line. But can that be done? Are the homogeneous 
nucleation limit and the spinodal line related? To bring 
a real liquid all the way up to the spinodal limit, one 
would have to do so without any disturbances or imper­
fections in the system. However, real liquids are made 
of molecules that constantly move. As the liquid tem­
perature rises these motions provide the disturbances 
needed to upset liquid stability at a temperature less 
than the spinodal temperature. 

Frenkel (see e.g. ref. [11]) first calculated the least 
disturbance needed to create a minimum stable vapor 
bubble or the "potential barrier" to nucleation. He 
calculated the difference in Gibbs function of the liquid 
with and without an unstable vapor bubble in it and 
obtained the critical work, Wk crit ,. needed to create the 
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bubble: 

Wk crit = 17TR6u . (7) 

The radius, Ro, is the well-known unstable equilibrium 
radius : 

_ 2u 
R 0- (8) 

Psat a' T,up - P 

where T,up is the local temperature of the superheated 
liquid, and P is the pressure in the surrounding liquid. 

Wk crit must now be compared with a characteristic 
energy of the superheated liquid. Two energies are 
appropriate to this purpose: 
- The average level of molecular vibrational energy is 

on the order of kT, where k is Boltzmann's constant 
and T is Tsup - the temperature of the superheated 
liquid. Conventional theories of homogeneous 
nucleation are based on this energy. 

- The energy required to separate two molecules from 
one another. This is the depth of the "potential well" 
and it is well known to be on the order of k~ . The 
use of k~ was introduced in ref. [3], and is discussed 
below. 

The ratio of Wk crit to kT (or k~) is the Gibbs number : 

Gb==Wkcri.lkT. (9) 

What is the minimum Gb for which nucleation ab­
solutely must occur? The least possible value of R °will 
give the minimum Wk cri , and Gb. To find it , we first 
define: 

j == probability of nucleating a bubble 

in a given molecular collision. (10) 

Now j must be 1 for Gb = 0, and we expect that: 

dj = _ dWk crit 
(11)j kT or kT = -dGb, 

c 

so : 
. nucleation events -Gb 

(12)J molecule collisions = e . 

The problem thus reduces to establishing j. To do 
this, consider a spherical region of undisturbed liquid in 
which the smallest critical bubble, with radius Ro , 
might nucleate, and then count the rate at which colli­
sions can occur in this region (fig. 5). Nucleation must 
occur if just one of these collisions triggers a critical 
nucleus wilhin one relaxation time (or about 10 colli­
sions). This gives: 

Probability of nucleation = j:O; 10- 5 . 
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Fig. 5. Model for calculating the maximum j. 

It was thus shown in ref. [3] that the limiting value of j 
is 10- 5 . This limit, of course, is only an order of 
magnitude estimate. Fortunately, nucleation is only sen­
sitive to large variations in j. (Later we suggest 2 X 10- 5 

might be a better value.) 
We now have a prediction for the limit of homoge­

neous nucleation. To find how close to the the spinodal 
line it lies, we use the thermodynamic availability of 
spinodal liquid, with respect to liquid at the limit of 
homogeneous nucleation : 

.1a I ~Pn = Gbmin(kT or kTc) , (13) 

where Gbmin = -In(2 X 10- 5) = 10.8, and the isobaric 
difference in availabilities is : 

.1a I~Pn = [.1h - T h .n ..1s1:'n.. (14) 

It is shown in ref. [3] that eq. (14) implies a .1T on 
the order of 1°C between the homogeneous nucleation 
and spinodal lines. Therefore the liquid spinodal line 
can be located with high accuracy using a homogeneous 
nucleation prediction. We make this prediction by com­
bining eqs. (7) and (8) in eq. (12). The final result, 
which includes a curvature correction (see ref. [11)), 
(1 - VI/Vg)2 that cannot be obtained from eq. (7), (8) 
and (12), is : 

3 
08= 1617u (15)1 . 2 0 

3(kT)[Psat(T,p)-p] (1-vl/Vg) 

The terms T,p, vr , and Vg are defined in fig. 1. The term 
kT is kT,p in the conventional theory, but we show in 
section 3 that it probably should be k~. 

When this argument is applied to the nucleation of 
liquid drops in a vapor - which is less dense - far fewer 
nucleation events are needed in the limiting case of 
complete nucleation. Thus, j must be far smaller and 
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Gb far larger. This leads to large temperature dif­
ferences between homogeneous nucleation and the vapor 
spinodal. 

2.3. Experimental data for homogeneous nucleation at 
high superheat, or large values of j 

V. Skripov and his coworkers at the Ural Institute at 
Sverdlovsk have pushed the limit of liquid superheat 
much further in the laboratory than anyone else. Much 
of this work is summarized in two books [11,12]. Avedi­
sian [13] recently provided an extensive compendium of 
measured liquid superheat and related j values *. 

Many techniques exist for creating high liquid super­
heats. The most effective has been Skripov's method of 
pulse heating a fine wire filament. When the wire is 
subjected to a known electrical pulse, its temperature 
rises rapidly and predictably within a few microseconds. 
As the temperature rises, a few isolated instances of 
nucleation occur; but then - at a certain temperature ­
a complete blanket of vapor appears on the wire. It is at 
this point that no further temperature increase is possi­
ble in the liquid. 

Skripov reached different limiting temperatures de­
pending upon the rate at which he heated the liquid. 
However, as the heating rate rose, the temperature 
approached an asymptote. The value of j at that limit 
was about 10- 5 (Skripov reports some values of j 
slightly above 10- 5, but only at heating rates for which 
a different and less reliable experimental technique was 
used.) 

Fig. 6 shows those data of Skripov et aI. , available in 
1976 [14], for j values on the order of 10-13 . The 
difference between his homogeneous nucleation temper­
ature and the saturation temperature at the same pres­
sure, is plotted against T,. The notational distinction 
between fsp (liquid spinodal) and gsp (vapor spinodal) 
is introduced temporarily in fig. 6 because it includes 
the best data available for nucleation of droplets in 
sub cooled vapor. The liquid and vapor spinodal limits 
calculated from van der Waals' equations are also in­
cluded. 

Fig. 6 makes two things clear: One is that the 
homogeneous nucleation limits for the 12 liquids do 
conform to Corresponding States correlation. Further­
more, the shape of the dashed correlating line through 
them is very similar in form and placement to the van 
der Waals prediction. This corroborates the demonstra­

* 	Actually, Skripov (and Avedisian as well) use J instead of J. 

J is equal to j multiplied by the rate of molecular collisions 
3per cm J is normally about 10 39 times j in these units. 

tion [3] that these data should be almost the same as the 
spinodal line which is a thermodynamic variable. The 
second point made clear in fig. 6 is that - as we 
anticipated - the vapor nucleation data do not in any 
way conform to Corresponding States correlation. 

In ref. [14] the following equation was fitted to the 
Skripov data: 

iJ.Tr = 0.905 - Tr,s., + 0 .095 T/s., ' (16) 

nus gives values slightly less than the true generalized 
spinodal value, because j for this set of Skripov's data 
is a factor of 10- 8 smaller than the spinodal j *. 

All the variables in eq. (15) are subject to corre­
sponding states correlation. Forming such a correlation 
for the limit of pressure undershoot was the subject of 
ref. [5J. This result, based on k~ instead of kT, was: 

iJ.Pr = Psp - Psa, 

= 	 112.82 + 224.42w (1 _ T )1.83 . (17)j-In(j) r ,Sp 

See fig. 1 for notation and note that, while j "" 2 X 10- 5 

gives the spinodal line, any smaller j gives a homoge­
neous nucleation limit that does not reach the spinodal 
line. 

The Corresponding States correlation can also be 
written in terms of temperature. The result for the 
spinodal line can be approximated with high accuracy 
in the form: 

iJ. Tr = 0.923 - 1', ,5.' + 0.077 T,:sat. (18) 

nus lies about 2% above the correlation given by eq. 
(16), and reflects the increase of j from the value of 
10 - 13 (which was characteristic of Skripov's experi­
ments) to 2 X 10- 5. 

3. The development of equations of state and fundamen­
tal equations to describe the metastable regions 

We can now place the spinodal limit with reasonable 
accuracy. However thermodynamic properties are gen­
erally unavailable in the metastable and unstable ranges. 
Such data are constantly needed in boiling and two­
phase heat transfer work, but they are extremely hard to 
come by, and little analysis has been done. 

It has been customary in boiling work to estimate 

* 	People unfamiliar with these calculations will understanda­
bly be startled at the notion that a factor of 10- 8 makes so 
little difference in this range. 
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thermodynamic properties in these regimes by extrapo­ "caloric" , or specific heat, equation of state to give ­
lating them linearly in temperature. This works in say - enthalpies or entropies. A fundamental equation, 
slightly superheated liquids, but at higher superheats when it can be written, is more convenient than a set of 
such a simple strategy becomes impossible. (The specific equations of state. It provides all thermodynamic infor­
heat at constant pressure approaches infinity on spinodal mation through straightforward calculations. The 
lines, liquids become highly compressible at high super­ Helmholtz function form of the fundamental equation, 
heat, etc.) for example, can be obtained from the p-u-T and c~ 

equations: 
3.1. The formulation of fundamental equations 

j RT/ P,,,()'" u, T = '" ref + P d u' 
u.The "fundamental" or "canonical" thermodynamic 

equation is one from which all equations of state can be + iT c~(T')[T/T' - 1] dT ' 
derived and in which all thermodynamic properties are Trd 

embodied. Four common ones for a pure substance take -R(T- Trer ) , (20)
the forms s = s(u, u), h = f(s, p), '" = .peT, u) and 
g = geT, p). The several equations of state are obtained where (Pref' T,.ef) is a reference point where the ideal 
from the derivatives of these equations with respect to gas equation is valid and the entropy is taken as zero. 
their independent variables. For example, the p-u- T The Steam Tables (see, e.g., ref. [15) or ref. [16» are 
and energy equations of state are obtained from: normally based on empirical fundamental equations in 

the Helmholtz form with scores of constants in them. 
p/T= (as/au)" and l / T= (as/ au) u' (19) 

Such equations permit one to evaluate any thermody­
One tends to associate the p-u- T equation with the namic property within four decimal places. But we 

term "equation of state"; but it gives incomplete ther­ seldom havtl anything nearing such complete property 
modynamic information and must be combined with a information for fluids other than water. Furthermore, 
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such equations do not normally provide valid informa­
tion in the metastable regimes. 

3.2. Surface tension 

The property, surface tension, a, is important m 
predicting the burnout heat flux - a crucial design 
variable in any energy system in which beat is removed 
by boiling. Unfortunately, it has not been measured 
over wide ranges of temperature for many fluids . 

Furthermore, 0 is intimately related to the p-v-T 
equation of state. Van der Waals - well known for his 
remarkably simple and successful equation of state ­
also developed this remarkable and completely precise 
equation for predicting tbe surface tension, 0 , from a 
knowledge of the p-v-T equation of state [17]: 

j ", 1 [
0= ao ' . 5/2 Pr ,sa, (vr - vr,r) 

urf Vr 

(21) 

The integration of eq. (21) requires complete p-v-T 
values in the metastable and unstable regimes. Thus 
surface tension can be used to extend metastable prop­
erty information and vice versa. 

3.3. Karimi's fundamental equation for water 

Karimi made the first attempt to create an accurate 
fundamental equation for water in the metastable regi­
mes. He and Lienhard first (1] made a relatively crude 
modification of the Keenan-Keyes-Hill-Moore 
(KKHM) equation of state for water [15]. Karimi then 
refined the curve-fit and produced a greatly improved 
equation [2]. 

Some of the important results predicted by Karimi's 
equation are shown in the modified p-v-T and T-s-p 
surfaces shown in figs. 7 and 8. Notice that all of the 
properties exhibit continuous change as they pass into 
the "two-phase" regime. The stable, metastable, and 
unstable regimes are ali shown, and the conventional 
straight-line representations of mixtures are not in­
cluded. 

Although Karimi's results point out the potential for 
accurately predicting metastable and unstable behavior 
of real substances, he had to use different coefficients 
on either side of T= 150°C in his final equation. 
Consequently the equation displayed inconsistencies and 
discontinuities in the neighborhood of 150°C. 

Karimi based his work on the KKHM equation, 

(22) 

where Q is a function of p and T, obtained by fitting 
the data to a suitable expression with many terms of the 
type (T- a)m(p - b)n e- cp KKHM only used data 
from the stable regions in their fitting. Karimi improved 
the coefficients with the help of additional theoretical 
constraints and the meager existing data for metastable 
fluids. 

The KKHM equation is the sum of an ideal gas 
expression and a correction. No such features as changes 
of phase, stable and metastable regions, etc., can be 
modelled by this ideal gas" reference function". Many 
of Karimi's difficulties arose because he had to absorb 
all of the complexity of water in the correction term, Q. 

3.4. An improved strategy for creating a fundamental 
equation 

A new and highly accurate equation of state was 
developed: t1e National Bureau of Standards (NBS) by 
Haar, Gallagher, and Kell in 1979 [18] . It, too, gives 
pressure as the sum of a reference function and a 
residual correction, but the reference function has a 
theoretical basis. It displays all real fluid features quali­
tatively, and yields errors less than 1 % in wide ranges of 
T and p. Thus, its residual correction is much smaller 
than in the KKHM equation. It must only improve the 
accuracy - it need not . provide all the features of rea! 
fluid behavior by itself. Thus it can be fitted accurately 
with fewer terms. 

We are currently modifying the NBS equation in 
much the same way as Karimi modified the older 
KKHM equation. A key factor to doing this is the use 
of cubic equations to extrapolate p-v-T data. We turn 
to this matter next. 

3.5. Cubic equations of state 

Cubic equations of state, of which the van der Waals 
equation is the prototype, have the smallest number of 
free parameters that can represent real data accurately. 
They are therefore much safer to use in estimating data 
than more complicated ones. They display major fea­
tures of physical behavior correctly in relatively large 
interpolations, with no need for smoothing. When such 
equations have enough inherent flexibility and are care­
fully fitted, they are remarkably accurate at a very low 
cost of calculation. 
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3.5.1. A new form of cubic equation 
We have developed a new volume-cubic equation of 

state that includes most existing cubic equations of state 
as particular cases. General cubic equations have been 
developed by others, but their applicability has usually 
been restricted by tying some coefficien ts to certain 
groups of substances. 

We avoid this trap by making the procedure for 
determining the coefficients as flexible as possible. When 
data are plentiful they can be used to fit the coefficients 
statistically, and the resulting equation will be very 
aCCurate. This can also be done with less accuracy when 
the data are less plentiful; but then the result can be 
used to back out unknown data - even critical data. A 
major strength of this equation is that it can be written 
in many forms - suiting the form to the number of data 
to be used in determining its coefficients. 

The first form is of the same type as most existing 
cubic equations, with the coefficients normally - but 

not always - fitted with the help of critical data: 

r; aTr-A. 
P =--- (23) 

r r + b ( r + c / _ d2 ' 

where r'= CUr - I)Zc and b'= 1/ 0:, and - if one elects 
to use the critical data - a, c, and d become: 

d 2a = (1 - b)J, c =(1- b)/2, and = c2(l- 4b). 0: is 
related to the Riedel factor, CiR, by: 

_dpr.sa'i =0:(1+;\)-;\. (24)
CiR - dT T,-tr 

The new variable, r, greatly simplifies the relations 
among the coefficients. It has the virtue of vanishing at 
the critical point, which is the natural origin for equa­
tions of state. 

Eq. (23) includes many other familiar cubic equa­
tions as special cases. With Zc = i, Ci = 4 and ;\ = 0, we 
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get the van der Waals equation; with Ze = t 
a = 3/ (2 - 21 /3 )) and ,\ = ~ we get the Redlich-Kwong 
equation; etc, 

We have yet to say how to assign a value to the 
coefficient ,\ . Often, ,\ is chosen so as to make the 
equation better fit data away from the critical point, 
once the other constants have been fitted. However it 
might be unwise to rely this heavily on the critical point, 
which is mathematically singular as well as being a lone 
point. Indeed we have found that if, after using critical 
data for all but two constants, we fix both ,\ and a R 
using data away from the critical point, then aR is 
liable to disagree with the measured value. This suggests 
that using data from all over the p-v- T field might 
yield a better all-around equation if the critical point is 
allowed to float. We next see how this works. 

3.5,2, Application 0/ the cubic equation to a substance with 
a well-documented critical point 

Water is extremely well-documented and existing 
cubic equations have generally failed to represent it at 
all well - particularly in the liquid state. We used Pc , 
Te , and Ve from the IFC 1967 Formulation [16], but not 
the published values of aR ' Thus band ,\ were un­
knowns obtained by fitting the equation to saturation 
data from the IFC skeleton table. Details of the fit are 
given in ref. [19]. The results - with very modest predic­
tion errors - are reported in table 1. Saturated liquid 
properties are better represented by the present cubic 
equation than by any other, it predicts superheated 
vapor data very well, and it only shows inaccuracies in 
the compressed liquid range [19]. 

8 
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Table 1 
Comparison of predictions from eq. (23) with IFC 1967 [16] data for water 

T Psat SPsa. Uf SUr ug SUg hrg Sh fg 

(OF) (psia) (%) (ft 3jlb) (%) (ft 3j lb) (%) (Btu jib) (%) 

198 
250 
286 
370 
436 

9.783 
30.41 
54.47 

171.7 
335.2 

-3.9 
-2.8 
-0.7 

1.0 
2.6 

0.Q1716 
0.01733 
0.Q1753 
0.01810 
0.01878 

-3.6 
-1.9 
-1.2 

0.7 
2.2 

39.595 
13.357 

7.9282 
2.6842 
1.3181 

3.3 
1.2 

-0.2 
-2.3 
-4.0 

988.8 
943.9 
917.3 
849.7 
787.7 

0.4 
0.2 
0.3 
0.4 
0.3 

.. 

.. 
498 
536 
586 
636 

682.7 
899.8 

1343 
1955 

3.8 
3.5 
3.3 
2.4 

0.Q1954 
0.02848 
0.02203 
0.02483 

3.3 
4.1 
4.4 
3.2 

0.7721 
0.5889 
0.3117 
0.1859 

-4.0 
-3.8 
-2.3 

1.1 

727.0 
665.1 
579.9 
461.5 

0.0 
-0.2 
-0.3 

8.9 

.. 

.. 

.. 
678 2491 1.6 0.02879 -8.5 0.1230 3.6 34109 3.4 

686 2798 0.8 0.03238 -2.6 0.0949 6.4 256.7 8.2 .. 
698 2879 0.6 0.03371 - 3.5 0.0879 99 229.6 10.3 

.. Data on these lines were not used in fitting the cubic. 

3.5.3. Application of the cubic equation to substances with 
unknown critical data 

When critical data are unknown, it is pointless to use 
eq. (23), whose volume variable, r, is centered on the 
critical point. One may then return to eq. (23) in its 
dimensional form and use non-critical data to de­
termine the constants: 

RT a'T- x 
p=--- 2 . (23a)

v-b (v+c') _d'2 

This was done for methane and water in ref. [19] with 
equal success. Table 2, for example, shows the results 
for methane. It is clear that such prediction is extremely 
accurate. 

The liquid metals are natural substances for this 
application since, in most cases, tabulated data only go 
to a fraction of Tc. When the extrapolation is applied to 
mercury [20] and sodium [21], the results (table 2) are 
astonishing both in their accuracy and their implication. 
The critical point predictions for everything but vc.sodium 

Table 2 

Extrapolated critical constants obtained from eq. (23) 


(about twice the measured value) agree remarkably well 
with the published data. Consider what this implies: 

The published Zc for mercury is close to the van der 
Waals value of i and the calculated value is closer still. 
(We [4] recently presented other close agreements be­
tween the properties of mercury and the van der Waals 
fluid.) Thus mercury is very nearly a van der Waals 
fluid, and its reported critical data are probably accu­
rate. 

The predicted Tc and Pc for sodium are very nearly 
the same as the published values, so we are inclined to 
think these properties are known correctly. The mea­
surement of Vc is very difficult and often inaccurate. 
The value of Zc = 0.178, based upon the reported vc , is 
much lower than for other fluids. However, our predict­
ion - Zc = 0.307 - places sodium squarely among the 
light elements. It is thus likely that our Vc and Zc values 
are the more correct ones, and that the frequent sugges­
tion that liquid metals are not subject to the Law of 
Corresponding Stales, is wrong. 

Substance Source pc{MPa) 

Methane Pred. 
Litr. 

Mercury Pred. 
Litr. 

Sodium Pred. 
Litr. 

4.600 
4.599 

152.9 
153.0 

34.09 
34.10 

~(K) uc {m
3/kg) Zc 

190.52 
190.55 

1870 
1763 

2581 
2573 

0.006225 
0.006233 

0.2914 
0.2903 

0.0001913 
0.0001818 

0.377 
0.381 

0.008411 
0.004850 

0.307 
0.178 
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3.5.4. A second and very general form of cubic equation 
If one or more of the constants in eq. (23) is allowed 

to vary with temperature its accuracy might be further 
improved. The obvious way to identify accurate forms 
of temperature dependence is to fit the equation at 
several temperatures, and then to form the functions by 
correlating the resulting coefficients with temperature. 

To this end we turn to a second and far more general 
form of cubic equation that includes eq. (23) as a 
special case: 

p (v-vf)(v-vm)(v-vg ) - = 1 - -----~--"::...- (25)
P,o' ( V + b) ( v + c) ( v + d ) 

The quantities Ps." Vf' Vm' Vg , b, c and d all vary 
with temperature. The advantage of this form is that it 
automatically satisfies critical point criteria, but it need 
not be tied to them. Another nice feature is that it is 
prefactored to do away with the need for finding roots 
of the cubic in fitting the constants. 

Three of the coefficients in eq. (25) are the known 
temperature-dependent properties: Psa" Vf and vg . Thus 
the most straightforward use of the equation is one in 
which isotherms are fitted one at a time. 

Actually, two of these constants can be fixed with 
the ideal gas law limit at low pressure and the 
Gibbs-Maxwell equal-areas condition (eq. (2).) Then 
just two pieces of data will fit an equation that should 
be quite accurate along a given isotherm. 

The isothermal compressibility of saturated liquid, 
and one compressed liquid point, have proven to give 
the best results. It turns out that if the two missing 
pieces of data are reduced to just one by the seemingly 
arbitrary assumption that c = d, the resulting equation 
is still very accurate. For a given temperature, the 
coefficients for the equation can be found using very 
few data, and making a direct, not a statistical, calcu­
lation. 

The remaining problem associated with this kind of 
use of eq. (25) - that of generalizing the temperature 
dependence of the coefficients - remains to be solved. 

3.5.5. Applications of the cubic equation with temperature­
dependent coefficients 

The temperature-by-temperature application of eq. 
(25) to water has yielded accuracies that are within the 
tolerance of the IFC [16] Skeleton Tables in the subcriti­
cal range of pressures. A comparison of IFC data with 
our equation is given over a wider range of pressures for 
water in fig. 9. The only other cubic equation (actually a 
modified. cubic that was not intended for use with 
water) close enough to the data to appear on this plot is 

6 r-----------------------~ 
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\ 
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Reduced volume 

Fig. 9. Comparison of cubic equation, eq. (25), with IFC data 
(16] for liquid water at high pressures. 

that of Redlich [22]. Fuller's (23) cubic equation ­
intended for water - predicts values outside the figure. 

Another such comparison is presented. for ethylene 
in fig. 10. The present cubic again outclasses the exist­
ing cubic equations and other" simple" equations. The 
key to this success is , of course, the fact that the 
coefficients are free from having to obey any prede­
termined dependence upon temperature. 

We emphasize liquid properties because they are so 
hard to predict; however Murali [19] has shown that eq. 
(25) is extremely accurate in predicting superheated 
vapor properties. 

But a most important use of the new equation of 

6 \ 
T = 2 50 K\ \

5 \\ \ , \ yCubiC e quation~ 
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Fig. 10. Comparison of cubic equation, eq. (25), to data for 
liquid ethylene at high pressures. 
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state is that of predicting properties in the metastable 
regimes. Fig. 11 compares the liquid spinodal of the 
cubic equation with the one predicted in ref. [3). The 
agreement is very good except at such low temperatures 
and high liquid tensile stresses that both theories are 
being pushed to their limits of applicability. 

The nucleation limits shown in fig. 11 are both 
obtained from eq. (15), using both kT and kTc: the use 
of kTc is far superior. The choice makes little difference 
in the positive pressure range, which is the only range in 
which experiments have ever been made for large j's. 
At lower pressures the two diverge very strongly. Our 
recommendation to use kTc is largely based on the 
compelling evidence derived from the cubic equation. 
The value of j used with the present cubic is 2 X 10- 5 

instead of 10- 5 (as recommended in ref. (3)) - a minor 
alteration. The replacement of kT with k1'c is the 
revolutionary issue here. 

. 3.6. The prediction of surface tension 
An acid test of any p-u- T equation that purports to 

predict metastable and unstable properties is that is 
must correctly predict the temperature dependence of 
surface tension when it is used in van der Waals' surface 
tension eq. (22). The cubic equations for each isotherm 
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predicted conventional 
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Fig. 12. Predicted and measured temperature dependence of 
surface tension. 

have been subjected to this test * and the results are 
shown in fig. 12. Fig. 12 makes it quite clear that, 
except at the very lowest temperatures, the cubic equa­
tion passes this test wi th flying colors. 

4. Depressurization of hot liquids 

Consider a liquid in a container, suddenly depres­
surized from an initial point, (Pi' T j ), as SBOwn in fig. 
13. Such a system was studied both analytically and 
experimentally by Alamgir, Lienhard and Trela [24-26]. 

When the liquid is initially not too hot, or when the 
depressurization ends in nucleation well before the 
spinodal limit, the isentropic depressurization lies close 
to an isothermal path. Fig. 14 shows a typical 
pressure-time history for such a process from [25] . The 
sharpness with which the depressurization ends is very 
interesting. Experiments in ref. [26] showed that some 
nucleation oeeured on the pipe wall before the point at 
which depressurization abruptly reversed. Alamgir and 
Lienhard [25] therefore concluded that a real homoge­
neous nucleation limit was reached on the two-dimen­
sional pipe wall. 

Thus the homogeneous nucleation theory had to be 

* 	We thank Mr. Wei-guo Dong for his help with these calcula­
tions. 
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Fig. 13. Depressurization of a hot liquid. 

reconstructed in a sort of " Flatland" form. Nucleation 
was taken to occur everywhere on the wall when the 

10 18two-dimensional J was equal to nucleation 
events/ m2 s. This translates to j = 0.5661 X 10- 12 which 
is very close to j for Skripov's pulse heating results. 

The pressure undershoot, in this case, depends on 
the rate of depressurization, 2:' atm/ s (see fig. 14.) The 
reason is that a two-dimensional array of bubbles will 
have more time to grow and completely fill the wall if 
the rate is slower. 

Alamgir and Lienhard [25] defined a " heterogeneity 
factor," 

_ . actual potential barrier 
cf> = potential barrier for homogeneous nucleation 

slope in superheated t 
liquid range,I'=O.l7xI06 asm 

1000 

o 
'in 
0. 
0. 

- 500 
~ - psat =4355 psia
:::J 

'" '" Q) 
-Pn=260 psiaCi. 

\ 

lime, I ms (arbitrary zero) 

Fig. 14. A typical pressure-time history during depressuriza­
tion in 453°F (233.9 ° C) liquid. 

and an 1) "" Gb/ cf>. Then they demonstrated that: 

e - ~q, - J7T1)cf> erfc N 
2:'(l- vr/ vg) 

(26) 

and used eq. (15) in the form applicable to real (not 

homogeneous) nucleation: 


(15a) 


to eliminate 1) from eq. (26). They then used eq. (26) to 

calculate cf> for observed nucleation events. 


The resulting values of cf> are correlated as a function 
of 2:' and temperature in fig. 15. This correlation brings 
together the data of many investigators and it only 
breaks down when 2: becomes so low that single iso­
lated nucleation events can stop the depressurization. 
This occurs when 2:' is less than 4000 atm/ s. 

The correlation shown in fig . 15 can be summarized 
in the form : 

(27) 

for 

0.62 :s;; T,. :s;; 0.935, 0.004 :s;; 2:' :s;; 1.8 Matm/s. 

which correlates all available blowdown data with a 
10.4% rms error. 

The data in fig. 15 imply that j is 0.5661 X 10- 12 

This gives Gb = 28.2. By substituting Gb/ cf> for 1) in eq. 
(15a) and using eq. (27), we recast the undershoot 
prediction in dimensional form: 

(28) 

For the reader's convenience, this pressure undershoot 
is displayed in dimensional form for water, as a func­
tion of 2:' and the initial saturation temperature, Ti , in 
fig. 16. 

4.1. The damage-doing potential of a sudden depressuriza­
tion 

A most important practical problem is that of 
answering the question: "A large pipe carrying nearly­
saturated water at high pressure is suddenly ruptured. 
How much damage can each pound of water do to the 
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Fig. 16. Prediction of pressure undershoot applied to water. 

system in the resulting thermohydraulic explosion?" Two 
thermodynamic issues lurk in this important safety-re­
lated question. The first - that of saying how far below 
its saturation pressure the water must fall before an 
explosion is initiated - is answered by eq. (28). 

The second issue is that of determining the thermo­
dynamic a vailabili ty of the liquid a t this limi t. The 
availability of a liquid with respect to its surroundings 
specifies the maximum" useful" work - actually damage 
in this case - that it can deliver to these surroundings. 
The latter issue requires a knowledge of the thennody­
namic properties of metastable liquids. 

The isobaric availability of a slightly superheated 
liquid with respect to its saturation state is (recall eq. 
(14»: 

(29) 

By assuming cp is constant - which is certainly untrue 
at high superheats - we obtain as a limit for low 
superheat (see ref. [27].) 

(30) 

A description of the exact calculation, and the 
evaluation of ,1 a for van der Waals fluids at their 
spinodal lines are given in ref. [4]. We have also com­
puted availabilities of superheated water for EPR! using 
Karimi's fundamental equation. One of these calcula­
tions involved challenging the often-used assumption 
that isentropic depressurizations can be treated as iso­
thenna\. Fig. 17 shows what the left-hand region of fig. 
1 or 13 would look like plotted to scale. Notice that at 
Tr = 0.8855 (or T= 300°C) the assumption is not bad 
as long as the pressure stays positive; but at Tr = 0.9627 
(350°C) it breaks down much more quickly. 

This information is shown in another way in fig. 18 
which shows how the relation between p and T changes 
along isentropic paths, starting from various initial 
saturation temperatures. 

Fig. 19 shows how the availability of water above the 
normal boiling point, varies with the temperature at 
which it first crosses the saturated liquid line. As p 
decrease, the availability diminishes, but the reduction 
is too little to improve safety noticeably. A very rapid 
depressurization of 1.5 Matm/s brings water to nuclea­
tion at a point whose availability almost matches the 
saturation point from which depressurization began. 
The point where nucleation occurs in fig. 19 is obtained 
wi th the help of eq. (28). It is sobering that ,1 a is on the 
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order of RTc ' or about 10 5 ft-lbr/ lbm for water. Ther­
mohydraulic explosions can do a lot of damage. 

5. Summary 

This review clearly reflects the ongoing interests of 
its authors, and new results are currently being devel­
oped. New papers still under review at this writing 
include the development of corresponding correlations 
of saturated and metastable p-v-T properties [28], 
further description of the cubic equation development, 
and the prediction of surface tension from cubic equa­
tions [29]. The important points of the present discus­
sion are: 
(1) 	There is a real need to be able to predict spinodal 

lines, homogeneous nucleation, and properties of 
superheated liquids. 

(2) 	These issues present an inherent inter-relation of 
purposes: 
- A knowledge of metastable and unstable p-v-T 

behavior facilitates the extrapolation of single 
measurements of a over the full range of temper­
atures. By the same token, a knowledge of aCT) 
provides an important check on any equation of 
state. 

- The ability to predict homogeneous nucleation 
and the ability to predict the liquid spinodal are 
equivalent. 

-	 Thus knowledge of the p-v-T surface includes 
knowledge of the liquid spinodal and the limit of 
homogeneous nucleation as well. 

(3) 	 Eq. (15) predicts homogeneous nucleation in a 
variety of practical situations: 
- By replacing the left side with the -In) ap­

propriate to a real situation, one can use it to 
handle real situations. 

-	 If Vf, Vg and a are not available for eq. (15), 
correlations (17) and (18) can be used with good 
accuracy . 

(4) 	The vapor spinodal is unrelated to the limit of 
homogeneous nucleation of liquid droplets. 

(5) 	Strong evidence suggests that homogeneous nuclea­
tion theories should be based on the characteristic 
energy, k'Fc, instead of kT. 

(6) 	Metastable p-v-T data can be accurately predicted 
by fitting a general cubic equation to the known 
saturation points, a known saturated liquid com­
pressibility, a third stable equilibrium point and the 
Gibbs-Maxwell condition. 

(7) 	When more than just p-v-T data are needed, 
Karimi's method can be used to develop a funda­
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ratio of actual to ideal potential barrier to 
nucleation 
Helmholtz function 

w 	 the Pitzer factor, 
-1 - 10giO[ Pr,sal (Tr = 0.7)] 

General superscripts and subscripts 

denotes a dummy variable of integration, 
or the dimensional forms of a, b, c and d 

c a property at the critical point 
f, g saturated liquid or vapor properties 
fsp, gsp identify liquid and vapor spinodals in 

fig. 6 
h.n. a homogeneous nucleation limit 
r a "reduced" property (e.g. Xr =X/Xc) 
ref a reference state 
sat a property at a saturation condition 
sp a property at a spinodal point 
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