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data into the metastable and unstable regions. This yields a spinodal line that closely
matches the homogencous nucleation limit predicted by an improved kinetic theory.

Only the pressure, the saturated liquid and vapor volumes, and the liquid comi-
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pressibility at saturation, as well as one compressed liquid data point, are needed to
use the cubic equation for the interpolation process. The equation also yields an ac-
curate prediction of the temperature dependence of surface tension when it is
substituted in van der Waals' surface tension formula. Thus, by capitalizing on the

inherent relation among the p-v-T equation, the spinodal prediction, and the sur-
face tension — all three — it is possible to obtain each with high accuracy and minimal

experimental data.

Introduction

Surface tension is intimately related to the metastable and
unstable fluid states, and to the p—v-T equation that describes
these states. The aim of this study is to use this interrelation to
assist in the development of means for estimating and predict-
ing both p-v-T and surface tension data. We therefore begin
by reviewing the character of this relationship.

Surface Tension and the Equation of State. It was shown
in 1894 by van der Waals [1] that the temperature dependence
of surface tension could be predicted precisely by the
expression

a

vr 1 vy 1/2

2 =" s [pwte v [ pav] av o
(o) "rf L% ”rf
where o is the surface tension; 7,, p,, and v, are the reduced?
temperature, pressure, and volume: and where g and f denote
saturated vapor and liquid values. The constant o, is a
reference value of the surface tension which van der Waals
showed how to evaluate in terms of molecular properties. (No
one to date has managed to make accurate evaluations of o.)

Little has been done with equation (1) because its use re-
quires a full knowledge of p-v-T information throughout the
metastable and unstable fluid regimes (see Fig. 1). van der
Waals used his own famous equation of state in equation (I)
and — without the aid of a computer — succeeded in making an
approximation valid only near the critical point:
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Recent studies (see, e.g., [2]) of the variation of ¢ with 7, near
the critical point suggest that

lim _ 7 \1.280r1.29
Tr_10°<(1 T,) 3

gives a more plausible temperature dependence for real fluids
than equation (2). It is also known that a for of equation (2)
with an exponent of 11/9, or 1.22, represents a wide variety of
fluids pretty well at lower temperatures.
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Typical real-fluid isotherms

On Locating the Spinodal Line. A knowledge of the loca-
tion of the liquid and/or vapor spinodal lines can be par-
ticularly helpful in the process of developing the p-v-T equa-
tion of state that is needed to complete the integration of equa-
tion (1). In 1981, Lienhard and Karimi [3] provided molecular
arguments that showed that the liquid spinodal limit* could be
predicted quite accurately by homogeneous nucleation theory.
They also showed that this was not true for the vapor spinodal
limit [3, 4]. Vapor spinodal lines lie nowhere near the limit of
homogeneous nucleation for vapors.

In the course of their work, Lienhard and Karimi used the
conventional homogeneous nucleation expression

_nucleation events

—e—Cb 4
“ molecule collisions € 4

*The spinodal limit is the locus of points at which (Op/8v) 7 is zero (see Fig.
1).
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where?
Jj=probability of nucleating a bubble in a given collision (5)
and

Gb= Wk

and (see e.g. [5])

/(kTor kT,) (6)

crit
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Notice that in equation (6) we suggest that the Gibbs
number Gb should be a ratio of the critical work required to
form a nucleus to either K7 or k7,.. The conventional nuclea-
tion theory is based on the average kinetic energy of the sur-
rounding molecules, which is on the order of £7. However, it
was noted in [3] that the energy required to separate molecules
from one another is on the order of k7. This seemed to be an
equally plausible candidate for the characteristic energy of the
system.

When equations (4), (6), and (7) are combined, we obtain
the following expression for the homogeneous nucleation
pressure p corresponding with a given temperature 7,

B 167a3
T 3T or kT )Pe(Ty,) — p1P(1—v,/v,)?

Wk (7

—Inj (8)

where v, and v, are to be evaluated at 7g,. Two issues re-
mained: identifying the value of ; that will give the spinodal
limit, and deciding whether to use kT or kT,.

Lienhard and Karimi next curve-fit cubic equations to the
well-documented stable equilibrium states of water, constrain-
ing them to satisfy the “‘Gibbs-Maxwell’’ requirement that

5[1 vdp=0 9)

which stipulates that the two regions between an isotherm and
a horizontal line connecting f and g must be equal to one
another in area (e.g., Area A in Fig. 1 equals area B), They
chose the Himpan form [8] of cubic equation

A a
v,—b (v,—c)(v,+d)
and evaluated all five constants using least squares fit. They
re-evaluated the constants for each of many isotherms.

There were two weaknesses in this curve-fit procedure. The
first is that equation (10) was not forced to fit the ideal gas law
precisely at high temperatures. The second is that the Himpan
form turns out to be slightly restrictive. We remedy these
features subsequently.

Equation (10) with the five statistically fitted constants gave
interpolated liquid spinodal pressures that showed some
numerical data scatter. These pressures corresponded very

b= (10)

SActually, it is more common (see Skripov (5, 6] and Avedisian [7]) to use J
instead of j. Jis equal to j multiplied bgv the rate of molecular collisions per cubic
centimeter. For water, J is about 103 times j in these units.

Nomenclature

closely to the homogeneous nucleation pressures given by
equation (8) with j=10"5 and with k7. used as the
characteristic energy. " he interpolations did not come close to
equation (8) when the conventional energy k7 was used. (The
minimal value of j= 1073 was not purely empirical. Molecular
arguments in [3] fixed it within an order of magnitude or so.)

It is important to note that when these arguments are ap-
plied to the vapor spinodal [3] they show that the limit of
homogeneous nucleation of droplets is far from the vapor
spinodal limit.

A New Form of Cubic Equation for Fitting p-v-T
Data. Shamsundar and Murali [9, 10] have recently made ef-
fective use of the following general form of cubic equation in
fitting individual isotherms

p_ . (o) (0—v,) (V-0 (10
Psa (v+b)(v+c)(v+d)

The quantities pe, Uys Uy Vg, b, ¢, and d all vary with
temperature. This form has the advantage that it automati-
cally satisfies critical point criteria, but it need not be tied to
them, It is also prefactored to simplify fitting the constants.

Three of the coefficients in equation (11) are the known
temperature-dependent properties: pg,, vy, and Vg Thus the
most straightforward use of the equation is one in which it is
fit to one isotherm at a time.

Murali simplified equation (11) by setting c =d and thereby
reducing the number of unknown coefficients to three. These
three coefficients were determined by imposing the following
three conditions on the equation: the ideal gas limit at low
pressures, the Gibbs-Maxwell condition, and the measured
isothermal compressibility of saturated liquid. He thus
evaluated the coefficients of the equation directly (rather than
statistically) using very few data.

The condition under which equation (11) reduces to the
ideal gas law, by the way, is

£=b+c+d+vf+v,,,+vg (12)
sal

This kind of temperature-by-temperature application of
equation (11) yielded far higher accuracies [10] than any ex-
isting cubic equation, particularly in the liquid range. The
equation also performs extremely well in the stable
superheated vapor range, The key to this success is, of course,
the fact that the coefficients do not have to obey any predeter-

mined dependence on temperature.

An IMustrative Application of the Preceding Ideas. Infor-
mation of the kind we have been describing can be used to ex-
pand existing knowledge. Karimi, for example, developed a
new fundamental equation [11] for water, based in part on his
interpolations. When this fundamental equation was used to
generate p-v-T data for use in equation (1), the resulting
values of /0, lay within 4.3 percent of measured values over
all but the lowest range of saturation temperatures. This was

A,a,b,c, d undetermined constants in the various
cubic equations

Gibbs number (see equation (6))

J nucleation probability, equation (5)

J = jexpressed as a rate per unit volume
k

Boltzmann’s constant

9]
.o
ol

p = pressure
T = temperature
v, vy, v, = specific volume, saturated liquid volume,

saturated vapor volume
v, = vattheroot of a cubic p-v-T equation be-
tween v, and v,
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g, g, = surface tension, undetermined reference
value of ¢
w = the Pitzer acentric factor,
—1-logyoprsa (T,=0.7)

Superscripts and Subscripts

¢ = a property at the critical point
f, g = saturated liquid or vapor properties
r = a ‘“reduced” property (X,=X/X,)
sat = a property at a saturation condition
sp = a property at a spinodal point
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Fig. 2 Typical values of the error in pressure as predicted by cubic
p-v-T equation curve-fitted to four data points

the first and only such use of the van der Waals surface ten-
sion theory to verify p-v-T information, to our knowledge,
and it displays the potential interaction of ¢ and p-v-T
information.

Present Objectives. The availability of Shamsundar and
Murali’s new method for interpolating isotherms gives means
for substantially improving upon the work in [3] and for re-
opening the two questions: (1) “‘Is kT, a better characteristic
energy than A77 (2) ““What minimum value of j gives the
spinodal limit when it is used in equation (8)7"'

We therefore address these matters using van der Waals’
surface tension prediction as a hitherto little-used validity
check.

Isothermal Curve Fits

We altered two of Murali’s assumptions: We did not use the
assumption that ¢ =d. This increased the number of unknown
coefficients by one, but stood to improve the accuracy of the
resulting equation. The second alteration dealt with the
restrictive form of the denominator of equation (11) (v+b)
« (v+c¢) (v+d). In this form the equation is restrictive if b, ¢,
and d are to be real. This implication was relaxed by writing
the denominator in the form (v + @) (v* + fv+ g) where f=b+¢
and g = bc [9]. This form allows b and ¢ to be complex without
using complex numbers explicitly.

To complete the curve fit we needed one more condition
than Murali did since we chose not to set c=d. For this we
selected a high-pressure liquid point. We identified the
pressure that made the isotherm best fit the available data for
stable liquid and vapor states by trying several pressures until
we found the one that worked best. For water this pressure
proved to be about 800 bars, or a reduced pressure of about
3.7, although substantially higher or lower values worked
almost as well. Data from the IFC Formulation for Scientific
Use [12] were used to do this.
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Fig. 3 Comparison of the spinodal limit of water as predicted by
homogeneous nucleation theory and by the general cubic equation

When the four conditions were applied to the cubic equa-
tion (11) they yielded four nonlinear equations which we
solved using the method of successive substitutions and linear
interpolation.

We made sets of isothermal curve fits for water and for
several straight-chain hydrocarbons. For the straight-chain
hydrocarbons, we used the data of Starling [13] as curve-fitted
by Reynolds [14], where we could. (However, in a few cases
the Starling data for liquids disagreed with API data [15] or
the data of Vargaftik [16].) These were the only substances for
which we could readily obtain reliable p-v-T and surface ten-
sion data [15, 16, 17] over broad ranges of temperature. In all
cases, the high-pressure p-v-T data point used in the curve fit
was the value at p,=5.

We also looked at ammonia, argon, benzene, carbon di-
oxide, methane, hydrogen, oxygen, and nitrogen for which we
did not have complete data over large ranges. In these cases
curve fits were only made at one temperature each, The data
sources for these cases were [16, 17, 18].

The fluids considered here resolve roughly into two
classifications: those for which we are confident of the ac-
curacy (water, oxygen, hydrogen, nitrogen, butane, heptane,
pentane, and propane) and those for which we found some
level of unresolvable disagreement in the relevant properties
(ammonia, argon, benzene, carbon dioxide, ethane, hexane,
methane, and octane). In the subsequent discussions we take
care to base our conclusions only on the results obtained in the
former fluids.

Figure 2 shows the resulting errors of the cubic interpola-
tions for several typical fluids. These plots of error in the
predicted pressure, at selected values of 7, in the liquid range,
reflect a very severe test of the curve fits. They consistently
show errors substantially less than one percent, at reduced
temperatures below 0.9.

Liquid Spinodal Limits

Figure 3 compares the spinodal limit of water as predicted
by our cubic equation with the predicted spinodal limit based
on equation (8). The NBS surface tension recommendation
[19] was used in this calculation. (The value of j used in Fig. 3
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Fig. 4 Comparison of the spinodal limit of several fluids as predicted
by homogeneous nucleation theory and by the general cubic equation

was 2x 10~5. We return to the question of specifying j below.)
The agreement is very good when kT, is used in place of kT in
the equation, except at such low temperatures and high liquid
tensile stresses that both theories are being pushed to the edge
of their limits of applicability. The choice between kT and kT,
makes little difference in the region of positive pressure, and
this is the only region in which nucleation experiments have
ever been made for large j. At lower pressures the two diverge
very strongly.

Our suggestion that k7 be replaced with k7, is largely based
on this kind of extrapolation. This kind of demonstration was
made less conclusively (with the less flexible Himpan equa-
tion) in [3]. The present evidence is very compelling indeed.

Several other such comparisons are given in Fig. 4 for
butane, heptane, hexane, and propane. (Since surface tension
data were not available for butane and propane over the entire
range of temperature, the missing values had to be filled in
with the help of equation (1) in these cases.) In each case, we
have used a limiting value of j that best fits the extrapolation.
These j’s do not all match the value of 2x 10~ used for water.

The four fluids selected for display in Fig. 4 were chosen
because they embrace a wide range of j values. By the same
token, the four fluids shown in Fig. 2 were selected because
they typified the error of the many fluids that have been fitted.

The results of an inverse kind of calculation are shown in
Fig. 5. Values of v —In(/), which is inversely proportional to
the pressure difference between saturation and the liquid
spinodal line, were calculated at each point using equation (8),
with kT, and the pressure difference predicted by equation
(1.

Figure 5 strongly suggests that a “‘best value’ of j for the
spinodal limit — if one truly exists — is one slightly in excess of
10-3, in preference to 10~° which was previously suggested
[3]. It is clear that these j limits are fairly sensitive to the ac-
curacy of the data upon which they are based. Thus, in choos-
ing the appropriate limiting value, one must be guided strong-
ly by water and the other very well-documented fluids.

One must also consider whether or not these j values were
obtained in regimes in which the cubic equation is truly very
accurate. Figure 2 makes it clear that the general cubic equa-
tion interpolations begin to lose precision at very high
temperatures — typically before 7,=0.9. It also becomes ap-
parent in the subsequent section that, although it interpolates
stable properties very accurately at low temperatures, equa-
tion (11) probably fails to represent metastable and unstable
properties with very high accuracy at low temperatures. This is
evident in its failure to predict the temperature dependence of
surface tension with high accuracy below 7, =0.5.

We accordingly restrict the plots in Fig. 5 to the range
0.5< T, <0.85, or to a smaller range in which reliable data are
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Fig. 6 Predicted and m d temperature dependence of the sur-
face tension of water
available. Furthermore, we suggest that the middle

temperature range in Fig. 5 is the most reliable. We have
averaged the ordinate values of the more reliable data in Fig.
3, giving water double weight, to obtain the recommendation
that

jspinodal =3x10-°

This is just a little higher than the values of (1 or 2)x 107,
used previously. However this must be accompanied by the
warning that we might eventually have to admit some
dependerce of the limiting j on 7, and the fluid. (Of course
3% 1073 is an approximation that one would only want to use
if better information about j were unavailable.)

Notice, too, that replacing k7 with k7, was a pretty revolu-
tionary suggestion. The modification of j by even so much as
an order of magnitude, on the other hand, is far less important
because most calculations based on j are very insensitive to its
value,

Prediction of Surface Tension
The acid test of any p-v-7 equation that purports to predict
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Fig. 8 Predicted and measured temperature dependence of the sur-
face tension of three fluids

metastable and unstable properties is whether or not it cor-
rectly predicts the temperature dependence of surface tension
when it is used in van der Waals’ equation (1). We have sub-
jected our cubic equations for water to this test at each
temperature, and the results are shown in Fig. 6.

Figure 6 makes it quite clear that, except at the very lowest
temperatures, this prediction has been extraordinarily suc-
cessful. Nevertheless, it is this evidence that suggests that,
while the cubic fits the low-temperature stable points with
great accuracy, it is probably less accurate than we would wish
in the metastable-unstable range. Of course, this observation
is based on water —the only substance for which we had full
data below 7,=0.5, but one which is also known for its
strange behavior at low temperatures,
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Figure 7 shows the error in the predicted temperature
dependence of surface tension, for water. The prediction is
very nearly within the reported accuracy of the NBS surface
tension data [I19] for 7,=0.5. The accuracy of Karimi’s
prediction is also included for comparison.

Figure 8 includes a comparable set of curves for heptane,
hexane, and octane, the only fluids besides water for which
convincing surface tension data were available over a wide
range of temperature [16]. These curves again show that the
cubic interpolations give very good predictions of the
temperature dependence of surface tension when they are
substituted in equation (1). Figure 9 shows the percent error in
a/a, for these fluids. Once again the results are very accurate
for 7,<0.85.

While equation (1) only predicts /0y, we would like to be
able to predict o, as well. To make the comparisons in Figs. 6
and 8, it was necessary to calculate the average value of o, for
each substance, based on the surface tension data. We also
computed some values of g, at single points for fluids for
which reliable p-v-T and o data were not available over ranges
of temperature.

In 1955, Brock and Bird [20] showed that the appropriate
corresponding states nondimensionalization of o was
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oo/p.3(kT.)V3. Figure 10 presents the correlation of our o,
values as a function of the Pitzer factor w using this non-
dimensionalization.S The points based upon the data in which
we have high confidence are presented as solid symbols. They
define the following correlation

0o/ P2} (kT)V* = 1.08 — 0.650 (13)

with a correlation coeflficient of 0.995. The remaining data are
somewhat more widely scattered, but they do not significantly

alter the correlation.

Others, starting with Hakim et al. [23], have formed cor-
responding states correlations for o that include expressions
for o,. These can be very useful, but they are normally based
on assumed forms of the temperature dependence of o/¢,,
that differ from that given by van der Waals’ integral. Yet,
even though these oy expressions might also be linear in w (as is
true in [23]), they do not and should not match equation (13).
Equation (13) gives the lead constant specifically for the van
der Waals integral.

One can thus predict surface tension with acceptable ac-
curacy for many applications, using p-v-7 data alone, with
the help of equations (1) and (13). As a matter of academic in-
terest, we can predict a dimensionless o, for the van der Waals
equations (for which w= —0.302). The value is 1.276.

Conclusions

I Tt appears possible to interpolate p-v-7" data with great
accuracy and a minimum of experimental data, using equation
(11). The accuracy of such predictions has proven to be best
(for the 16 fluids studied) in the range 0.5< T, <0.85.

2 The limiting value of j for which the homogeneous
nucleation theory, equation (8), gives the spinodal limit, is on
the order of 3 x 10 -3, However, it might ultimately show some
variation from fluid to fluid, or from one saturation condition
to another,

3 Further compelling support is provided for the idea (sug-
gested in [3]) that k7. should be used in equation (8) in place
of £T.

4 Equation (1) provides convincing support for the present
predictions of metastable and unstable p-v-7 data.

5 The lead constant g, in equation (1) is given by equation
(13).

6 The Shamsundar-Murali cubic equation has only been
used for individual isotherms here. We strongly recommend
that the problem of developing general corresponding states
correlations to represent the temperature dependence of its
coefficients be undertaken in the future.
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