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The equations for both the boundary layer and the outer potential flow over a yawed 
cylinder can be resolved into equations for the crosswise and spanwise velocity com-
ponents. These components of the boundary layer are evaluated using Sears' method, 
and the separation point is found to be uninfluenced by the yaw angle. The potential-
flow solutions for the spanwise and crosswise flows are added together to determine vor-
tex patterns behind the cylinder. The approximate direct dependence of the Strouhal 
number upon the cosine of the yaw angle and/or the drag coefficient upon the square of 
the cosine, are verified. Experimental determinations of the Strouhal number and 
visualization of the flow pattern are consistent with the analysis. 

Introduct ion 
THIS study developed out of a research project aimed 

at understanding the wind excitation of power transmission 
lines. Our more restrictive purpose here wi l l be that of describing 
the boundary layer, and (in relation with it) certain aspects of 
the vortex shedding from infinite, smooth, stationary, j'awed, 
circular cylinders. Problems related to cylinder motion and the 
effects of outer strands of wound cables have also been studied but 
they wi l l not be considered here. 
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T h e description of the inviscid flow in the cyl inder wake is ac-
complished b y adding a spanwise component of flow to the von 
K a r m a n vortex street which appears as the crosswise component. 
T o do this we must first learn whether or not the crosswise 
boundary- layer component is the same as in unyawed flow. T h i s 
is part icular ly important with regard to separation since the 
vortex shedding frequency is related to the wake width and the 
base pressure, as Grove, et al. [ I ] 4 and Roshko [2] have ob-
served. A portion of this study is accordingly given to decom-
posing the boundary- layer equations into equations for the span-
wise and crosswise flows and then solving these equations. 

T w o effects of the vortex shedding that have been proposed 
without proof in the past are: (a) T h a t the vortex frequency 
decreases as the cosine of the yaw angle, /?; and (b) that the drag 
force decreases as cos2 /3. Relf and Powell [3] obtained the latter 
result experimentally for the range 104 < Re„ < 105, where5 

Rero = 2 IJJi/v. 

4 Numbers hi brackets designate References at end of paper. 
5 Symbols not explained in context are defined in the Nomencla-

ture. 

- N o m e n c l a t u r e -
a = spacing of vortices in upper 

or lower row, or an un-
specified positive integer 

b = spacing between upper and 
lower vortex rows 

CD = drag coefficient, total drag 
force divided by pU J/2 

Cdp, C'of = pressure drag and friction 
drag coefficients based 
upon pressure drag and 
skin-fr iction forces 

F = u/Ui 
/„ = Blasius functions, defined bj ' 

equation (8) 
/„ = vortex shedding frequency 
O = v/V 
g„ = functional coefficients for 

spanwise velocity, defined 
by equation ( 1 1 ) 

H = i o - \ / R e , / t / , 

ii, m = summation indexes 

p = pressure 

p+ = p/pUi2 

R = radius of cylinder 

R e „ = Reynolds number, 2U^R/v 
S t = Strouhal number, 2fvR/U„ 

U(x) = crosswise component of free-
stream velocity at surface 
of cylinder 

U „ = velocity of undisturbed flow 
U\ = component of undisturbed 

flow in crosswise direction 
U' = velocity of vortex street 

with respect to undis-
turbed flow in crosswise 
direction 

u = velocity component along 
cylinder surface in cross-
wise direction 

V = component of undisturbed 
flow in spanwise direction 

v = velocity component in span-
wise direction 

w = velocity component normal 
to cylinder surface 

x = coordinate along cyl inder 
surface in crosswise direc-
tion 

y <= coordinate parallel with cy l -
inder surface 

z — coordinate normal to cyl in-
der surface 

a = angle between direction of 
flow and crosswise plane 

/3 = yaw angle, see Figs. 2 and 8 
F = circulation of vortices in 

spanwise direction 
Z = velocity component normal 

to £ — y plane 
f = coordinate normal to i- — y 

plane 

V = (\/lle,/R)z 
9 = x/R, see F ig . 2 
p. = viscosity 
v = kinematic viscosity, p/p 

E = velocity component in 
direction 

£ = coordinate normal to cy l in -
der, in plane of undis-
turbed flow 

p = density of fluid 
1 = general subscript indicating 

that U„ has been replaced 
with U t ; not applicable 
to g„ and / „ for n = 1 
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Fig. 1 Strouhai-Reynoids number relationship for u n y a w e d circular cylinders as defined 
by existing data 

Hanson [4] recently measured the effect of yaw angle upon the 
vortex frequency, /„, behind a slender music wire in the range 40 
< Re m < 150. H e found that, for ft < 68 deg, the relationship 
between the Strouhal and Reynolds numbers for unyawed cyl in-
ders (see F ig. I)6 represented his data when the U a i n both S t 
and R e „ was replaced with U„ cos ft. T h e representation was 
ragged at R e „ less than about 100 and good at the higher Re„. ? 

Hanson also found that Re„, at the inception of unstable shedding 
did not increase quite as rapidly as c o s - 1 ft. 

Prior investigations of the laminar boundary layer on yawed 
cylinders have been made by W i l d [6] who used an integral 
method to solve the sweptback wing problem; by Cooke [7] 
who used an exact solution for the wedge flows; and by Sears [8] 
and Gortler [9], Sears established, and Gortler extended, a 
general method for dealing with flows whose crosswise component 
of free-stream velocity is a polynomial in crosswise position. 
Schlichting [10] provides an excellent summary of these works. 

These boundary-layer treatments predict that separation oc-
curs at positions somewhat beyond where they are actually ob-
served. T h i s is because the descriptions become inaccurate in 
the neighborhood of the separation point. Nevertheless the 
qualitative behavior of such solutions is sound. Accordingly, we 
shall use Sears' method to determine how separation occurs on a 
yawed cylinder. 

Calculation of the Boundary Layer 
Fig. 2 shows the yawed, circular, cylinder configuration that 

we wish to describe. Under the following changes of variable; 

u = UiF(6, y) 9 = x/R 

v = VG(8, i?) ri = (VreJR)z 

(1) 

w = [Ui/V^iWid, T)) v+ = v/pUS 

Re, = 2 UiR/v 

the crosswise and spanwise boundary-layer equations and the 
•equation of continuity become 

FFe + HFV = + 2 F„ 

FO0 + HG„ = 20,, 

Fe + Hv = 0 

Fig. 2 Coordinate system 

with boundary conditions 

F = G = H = 0 at T? = 0 (5a) 

F = G = 1 at 7 ) = c o (56) 

T h e crosswise component of the free-stream velocity is i n this 

U{x) = 2J7i sin 6 = 2!7i 
n = 1 

s i n ( n 7 r / 2 ) 

so that — pe+, which can be written as RUUJUi*, becomes 

(»7r\ . ( n m \ 

— I sm — ) V 2 J 

(6) 

(7) 

7,1,71 = 1 

Equations (2) - (5) with (7) comprise the sj'stem that we wish to 
solve for F, G, and H. I n keeping with the method of Sears, we 
shall employ a stream function in the form of a Blasius' series 

(2) 

(3) 

(4) 
VRe, L = i 

( n + 1 ) s in (?) 
n ! e-fn(v) - # i ( i ? ) ( 

1 Fig. t is a "best estimate" which was made in reference [5] on the 
basis of the data of many previous investigators. 

7 A t 72 deg—the highest yaw angle—St was just twice what it 
should have been were it consistent with this representation. W e 
wonder if this might not have been some effect related to vibration 
of the nonrigid wire. 

T h e crosswise and normal velocity components are then 

„ (ft + 1) sin 

F = 2 E 
. 71 = 1 

' (a7r\ sm I — I 
V 2 / 

n! O'fn' 20fn' 

(8) 

(9) 
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and 

H = -
11(11 + 1 ) s i n 

2 E 
. ?! = 1 

0»-y
n 

+ 2!/, 

<?= E 
n = l 

e-'gn-^v) 

Spanwise Velocity Distr ibut ion 
The substitution of equations ( 9 ) - ( l l ) into equation (3) gives 

(10) 

while the spanwise velocity is expressed in terms of a different 
set of undetermined coefficients, as 

E = E 
71 = 1 

(n — !)(?» + 1) sin (mir\ 

T ) X 
n, 7)1 = 1 m\ 

fjg^d^"-' - fi' E - i)0""1^-' 

(11) 

T h e substitution of equations (9) and (10) into equations (2) 
and (4) yields equations in the Blasius' functions, /„. The evalua-
tion of the f„ is well known and, in fact, has been done in a very 
general way by Tifford [11]. We have repeated this computa-
tion for / i , f i , . . ., a n d / n and obtained values that differ slightly 
from Tifford's. Since the calculation of /„ is not difficult on a dig-
ital computer once/„"(0) is known, we shall only present a compar-
ison of /„"(0) 7 values with those computed from Tifford's func-
tions, in Table 1. The resultant crosswise and normal velocity 
components are plotted in Figs. 3 and 4 for a somewhat larger 
range of variables than has been presented in the past. 

I t is of importance to note that the separation of the crosswise 
flow occurs when 6 = 1.899 rad or 108.8 deg regardless of the yaw 
angle. However, if the spanwise flow should separate before 6 
reaches this value, then we can no longer expect the inception of 
vortex shedding to be independent of yaw angle. Sears and 
Gortler present tables from which </„_i can be obtained for n = 
1, 3, 5, and 7; but this will give insufficient accuracy for large 
values of 6. Accordingly, we must extend this calculation before 
locating the separation point. 

s • / m 7 r \ m ? n ( m + 1 ) s i n I — 1 

E 
n, 7/1=1 ml 

+ /i E (12) 
71 = 1 

Equating the l ike coefficients of 6 we get 

ga~i" + fi'g„-i - fWo-i' 

' mir' 
I 

\{n - l)/„,'ff„-i - mfmg„-1'] 

(13) 

i + // = a + i (m + 1) sin 

E r 
71,771 = 1 m\ 

where a is a positive integer. The boundary conditions on this 
family of second-order linear differential equations are: 

0„(O) = 0, n = 1, 2, . . . ; <7<,(co) = l 

gn( o o ) = 0 , n > 1 
( 5 a ) 

. -
Fig. 3 Veloci ty profiles in crosswise direction 

Equation (13) becomes go" + /iffo' = 0 for a = 1 . I ts solution 
subject to the boundary conditions go(0) = 0 and go( 0 3) = 1 is 

Table T Compar ison of initial values of f„" (0) com-
puted by Tifford w i th those obtained in the present 
study 

value of f"(0) computed: 

: ^ by - fiord in present study 

1.2526 1.'2326407 

: x;(0) 0.7244 0.7245672 

! ,1(0) 1.0320 1.0326583 

f5CO) 2.O368 2.0422885 

i fS(o) 0.2801 0.3136514 

1-^(0) 67.6375 67-4999114 

-

o-
^ — 

-

9' BO' 

-

-

R ' Z 

Fig. 4 Distribution of normal velocity component 
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Table 2 Functional coefficients for spanwise velocity, g„ 

••1 -r;2 X 10 -s„ X 10- -g6 x to' -Eg X 104 - e 1 0 x 105 

0. 0 0. 0. 0. 0. 0. 
0.2 0 11405 0.173J5 0.01183 0.03580 0.17810 0.51954 0 . 4 0 2 "749 0.3''*;'59 0.05223 0.16260 0.36034 1.03650 
0.6 0 55839 0.'19361 0.01797 0.21569 0.54952 1.54954 
0.8 0 44616 0.6 '60 0.16675 0.23322 0.73379 2.06249 
1.0 0 54692 o.72421 0.307&6 0.24332 0.38445 2.57613 
1 .2 0 65335 o.77451 0.49470 0.26570 0.96797 3.06813 1.4 0 72001 0.77807 0.70591 0.34947 0.97402 3.47962 
1.6 0 73925 0.73356 0.90350 0.52751 0.93667 3•73052 1 .3 0 34620 0.66437 1.06307 0.80290 0.93178 3.76605 2.0 1 39151 0.f6303 1.15330 1.14234 1.04668 3.60796 
•;.2 0 92569 0.463 37 1.16743 1.48490 1-33699 3.37274 2.4 0 95039 0.3603} 1.09934 1.76189 1.79393 3-25557 - . 6 0 96365 0.26796 0.97290 1.91876 2.33970 5-55273 2.3 0 93069 0.19020 0.81095 1.93030 2.85326 3-73259 5.0 0 0.12912 0.63875 1.80434 3.21344 4.44360 
3-2 0 9 9542 0.03389 0.47651 1.571-78 3-33923 5.16429 
3-4 0 93656 0.05218 0.33730 1.20343 3.21138 5.70632 
3-6 0 93306 0.05109 0.22689 0.99141 2.86971 5.90154 
3 -3 0 95901 0.01775 0.14522 0.71938 2.3921} 5.67805 4.0 0 99951 0.00971 0.08853 0.49331 1.86647 5.03100 

0 9)977 0.00509 0.05145 0.32029 1.36722 4.23631 ^. >1 0 99990 0.00256 0.02852 0.19719 0.94263 3.29903 l'r, tj 0 99396 0.00124 0.01510 0.11523 0.61300 2.'10 589 0 99999 o.ooo57 0.00763 0.06406 0.37669 1.64699 0.00027 O.OO368 O.O3388 0.21907 1.06063 

Table 3 Derivatives of functional coefficients for spanwise velocity, gn' 

7 Co R'\ :•: 10 6,' x 10 ? G£ * 105 B' -x 10" Gio * 1C'5 

0. 0.57044 -0.86822 -0.05651 -0.43248 -0.83862 - 2 . VJO'JU 
0.2 0.56957 -0.8l.21G -0.06913 -0.41816 -0.89608 -2.59405 
0.4 0.56362 -0.82236 -0.14917 -0.33629 -0.92975 -2.57592 
0.6 0.54362 -0.72774 -0.32375 -0.1378} -0.95118 -2.560}t 
0.8 0.52212 -0.57250 -0.57225 -0.04822 -0.8678 5 -2.57170 
1.0 0.43349 -O.3&683 -0.83191 -0.03280 -0.60849 -2.5'l 7" 6 

1 .2 0.43404 -0.13409 -1.01977 -0.22959 -0.21607 -2.32227 
1.4 0.37669 0.09539 -1.06419 -0.63717 0.1270; -1.72170 
1.6 0.315'. - 0.29214 -0.93216 -1.14639 0.1804 2 -0.75090 
1.8 0.25446 0.43447 -0.64110 -1.57902 -0.20327 0-565 -
2.0 0.19757 0.51259 -0.25128 -1.76285 -0.99000 1.11537 
2.2 0.14755 0.52896 0.15609 -1.60356 -1.90622 1.0«3"-9 
2.4 0.10594 0.49550 0.50435 -1.11953 -2.59602 0.15:1;. • 
2.6 0.07311 0.42915 0.74369 -0.42791 -2.75692 -1.3733=' 
2.8 0.04849 0.34727 0.35476 0.30532 -2.27430 -2.85358 
3.0 0.03090 0.26430 0.85018 0.92487 -1.25825 -3-62955 
3.2 0.01892 0.19003 0.76155 1.33057 0.01607 -3-32411 
3 - 1 0.01113 0.12949 0.62609 1.49367 1.22732 -1.95036 
3-6 0.00629 0.08382 0.47823 1.44647 2.12182 0.06}?-; 
3-8 0.00342 0.05163 0.34179 1.25649 2.57893 2.12934 
4.0 0.00178 0.03030 0.22971 0.99861 2.61452 3.73044 
4.2 0.00089 0.01697 0.14570 0.73460 2.33762 1.58308 
4.4 0.00045 0.00907 0.08745 0.50397 1.89193 4.67535 
4.6 0.00020 0.00463 0.04978 0.3-2413 1.'W653 1.18292 
4.8 0.00009 0.00226 0.02691 0.19618 0.96944 3 . 5 7 5 1 4 
5.0 0.00004 0.00105 0.01384 0.11206 0.62340 2.49245 

f o eXP - j"My)dv dr, 

R* CO 

I exp 
J o ["J \ay)dy 

0 
dr, 

F o r a = 2, equation ( 1 3 ) becomes gi" + fuj/ — Ji'gi = 0. T h i s 
equation and the boundary conditions, g,(0) = (7i( c°) = 0, 
admits the t r i v i a l solution, ffi(t)) = 0. 

T h e sin (??!TT/2) elements in the r ight -hand side of equation ( 1 3 ) 
el iminate gn-1 from the equation for even or odd values of (n — 1) 
when a is even or odd, respectively. T h e n , since gi = 0, equa-
t ion ( 1 3 ) w i t h a = 4 becomes an equation i n <73 only, whose solu-
tion is g3 = 0. W e can then see b y induct ion that a l l other g with 
odd subscripts must also vanish. 

T h e g with even subscripts have been obtained from succes-
sive numerica l solutions of equation ( 1 3 ) for a = 1, 3, . . 1 1 
beginning w i t h the evaluation of g<, using equation (14). T a b l e s 
2 and 3 present these values of gn and gn'. F i g . 5 d isplays the 
resulting spanwise velocity profiles computed with the a id of 
equation ( 1 1 ) . These profiles show that the spanwise flow 
separates—that v2 vanishes on the wal l—when 9 exceeds 108.8 
cleg. T h e actual location of spanwise separation cannot be de-
termined without computing a very large number of gn. H o w -
ever, F i g . 6 i l lustrates that convergence is reasonably complete 
in terms up to gio, as long as 6 < 108.8 cleg. 

Spanwise separation is thus independent of ft and would occur 
after the boundary has separated i n the crosswise direction. 

Effect of Yaw Angle Upon Vortex Frequency 
Since the separation point has been proven independent of the 

y a w angle we can assume that the crosswise component of the 
vortex street is uninfluenced b y spanwise flow. Neither the 

0.8 

0.6 

> 
\ 

ii 0.4 
O 

0.2 

0 

Fig. 5 

V - — Z 

Velocity profiles in spanwise direction 
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RELIABLE CONVERG-
ENCE IN COEFFICIENTS 
UP TO g , 0 

MAJOR AXIS OF ELLIPTICAL 
CYL.= 4R 
MINOR AXIS OF ELLIPTICAL 
CYL . 1 2 R 

FLOW 
CYLINDER 

DOUBIOUS 
CONVERGENCE 
IN a, TO g , 0 

YAW A N G L E , /3 

Fig. 8 Dependence of dimensionless vorfex frequency upon y a w am 

I t is not surprising that even equation (15) failed to correlate 
Hanson's results clearly at very low Rei since the regime of v is -
cous flow ceases to take the form of a real boundary layer. T h e 
preceding proof of the independence of the separation point on 
yaw angle thus ceases to be meaningful. 

A set of experiments by C h i u [12] in the range 3,900 < R e „ 
< 21,200 verifies equation (17a) between /3 = 0 deg and 60 deg. 
These data, which were obtained with the help of a thermistor 
anemometer [12] i n the wake of cylinders mounted in a water 
flume, are reproduced in F ig . 8. T h e reference value of St for the 
unyawed flow is only about 0.192. T h i s is a l ittle under the value 
of about 0.204 given b y Fig. 1. T h e difference probably arises 
from minor sidewall effects in the flume [13]. 

Fig. 8 also displays data for an unyawed elliptical cylinder 
whose cross section corresponds with the flowwise cross section of 
a 60 deg circular cylinder. T h e Strouhal number based upon the 
minor diameter is a little above that for an unyawed circular 
cylinder, and much greater than St cos /3 for a cylinder of radius 
R yawed at 60 deg. T h i s adds weight to our case b y showing 
that flow over a yawed cylinder is not equivalent to flow over an 
unyawed cylinder that has the same elliptical cross section par-
allel to the flow. 

Fig. 6 Successive approximat ions to spanwise velocity distribution at 
var ious values of 6 and at JJ = 0 .4 

RANGE OF 
VELOCITIES IN 
THE t = O FLANE VELOCITY OF VORTEX 

.STREET • U, - U ' 

NOTE: 
VORTEX STREET 

IS NOT DRAWN T o , 
SCALE. -

Fig. 7 Configuration of w a k e behind y a w e d cylinder 

geometry of the street nor the circulation, T , of the vortices in 
the crosswise plane wil l change, F ig . 7. Vortices wil l thus be 
shed at a frequency corresponding with a velocity of Ua cos /? 
over an unyawed cylinder. T h e correlation equation used b y 
Hanson, namely, 

'2f"R
 0 = St(2fl( Ua, cos $ ) / v ) = St(Re,) (15) 

L m cos p 

is thus vindicated. A T a y l o r series expansion of the right-hand 
side about R e „ gives 

r i 1 S J i — a S t ( R e . ) - R e „ ( • ( 1 - cos 0 ) (16) 
Uacosp \d Re/Re„ 

Inspection of F ig. 1 reveals that the second term on the right 
can be neglected above Hanson's range of interest and below the 
boundary-layer transition, especially when (3 is not very large. 
Thus, for a large range of practical interest, 

/ . ( / v u n y a w e d c y l i n d e r ) c o s P ( 1 7 ) 

S t ~ ( S t u n y a w e d cyl inder) COS ( 1 7 « ) 

Grove, et al., have shown that below R e „ 300 the thickness of 
the wake, which was constant at higher Re„, is now a function of 
Rev.. T h i s is the reason that Re,, begins to exert an influence on 

/ „ as it decreases. 

Effect of Yaw Angle Upon Drag Coefficient 
T h e drag coefficient, C D , is the sum of a pressure drag com-

ponent, CDP, and a frictional drag component, CD/• For an 
unyawed cylinder, the pressure drag component constitutes more 
than half of the drag as long as vortices exist in the wake ( R e „ 
> 5). As Reo, is increased from 300 to 10 1, friction drag de-
creases from about one quarter to a negligible fraction of pressure 
drag (see, e.g., [5]). 

T h e pressure drag coefficient computed by the classical von 
K a r m a n theory [14] is 

for an unyawed cylinder in a flow for which R e „ > 300. T h e 
symbols b and U' designate the vertical spacing between vortex 
rows and the velocity of the vortex street with respect to the un-
disturbed fluid, respectively. 

For a yawed cylinder, we wish to base the drag coefficient, 
[Ccp]i, upon the force in the crosswise direction and upon the 
flowwise velocity, U„. Since both U' and Um in equation (18) 
must be multiplied b y cos /3 as the cylinder is yawed, there wi l l 
be no net effect upon (U'/Um). T h e only change wil l result 
from the Ua? in the drag coefficient. T h u s 

[Ci>p]i = CDp cos213 ( 19) 

T h e smaller friction drag component can be expressed as 
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separation 

H(dll/dz)z^idx 

C B / = R e „ - ' / ' [ f u n c t i o n of/„"(0)] (20) 

for an unyawed cylinder. F o r a yawed cylinder, the U a in CD / 
and R e „ must be multiplied by cos /3. T h u s 

[CD,]I = CDf cos ( 2 1 ) 

which represents a sl ightly weaker influence of the yaw angle. 
W e must thus write 

[CD\ I ^ CD cos2 I R e i > 300 (22) 

as long as R e i and /? do not simultaneously become very small 
and very large, respectively. W h e n /3 = 60 deg and R e i = 300, 
for example, equation (22) wil l give a result that is about 2 1 
percent high, but at fi = 60 cleg and R e i = 1000, the error is 
only about 5 percent. 

Effect of Y a w Angle Upon W a k e Behavior 
T h e velocity components in a two-dimensional von K a r m a n 

vortex street are well known [14]. I f we add the spanwise com-
ponent to these components, we get a complete description of 
the potential flow in the wake 

= (7i + 

sinh 
7T(2f - 6) 

cosh 
i r ( 2 f - b) 2tt$ 

sinh 
7T(2j" + b) 

7T(2r + b) 27r£ 
cosh + cos 

Z = 
a 

> ! H ) 
cosh 

7T(2f b) , 2tr£ 
h cos 

a 

+ 

2tr£ 

a 

cosh 
7r(2f 6) 2tt£ 

— — COS 
o 

t> = V = £/i tan 13 

a = t a n - 1 f7i tan /3 

f / i -
4 . 4 4 F / a 

1 - ( 1 / 2 ) cos2 (2-rrUa) 

or if we note [14] that 2.22V/a = 17': 

2U'/U\ 
a = tan" tan /3 , 1 -

1 - ( 1 / 2 ) cos2 (27r£/a). 

Thus, at points halfway between the upper and lower vortices, 
where £ = ( 2 n + l ) o / 4 , we obtain a = t a n _ 1 [ t a n (3/(1 — 
2U'/UI)]. However, MUI = 1 - U'/UI and A = 6/0.281. 
Accordingly, if we approximate8 2R with 6, then 

8 Roshko [2] presents some data that indicate 1.10 < 6 / 2 R < 1.25, 
depending upon Rei. 

U'/UI ~ 1 - 3.56 St(cos 0 ) " 1 

and 

a ~ t a n " 1 [sin (3/(7.12 St - cos /?)], £ = 1 ) a (26a) 

Direct l j r above and below the vortices, on the diametral plane, we 
likewise get 

a ^ t a n " 1 [sin 0 / ( 1 4 . 2 4 St - 3 cos /3)], £ = na/2 (26b) 

Equat ions (26a) and (266) give for the /3 = 35 deg case shown in 
F ig. 7, a ~ 44 deg and 56 deg, respectively, when S t = 0.20. 
T h e resulting range of velocities in the diametral plane is sketched 
in F ig. 7. 

T h e motion of the vortex centers in the upper row can be ob-
tained by setting £ = na and f = 6 / 2 [14]. T h e n the first term 
in equation (23) vanishes and 

a = t a n - 1 U\ tan /3 

7tF , 7T6 
U i tanh — 

a a 

= tan 
tan /3 

U'/UI 
> 0 

(27) 

Again, we can write a t a n - 1 [sin (3/3.56 St] so that for S t = 
0.2 and /3 = 35 cleg, a ~ 38.8 deg. T h e vortex centers in the 
lower row wil l also have this same downstream direction, as a 
result of symmetry. 

I n the £ — y plane at f > 6 / 2 (a plane above the vortex cen-
ters), we must consider the bracketed term in equation (23). I f 

(23) 

(a) 0 = 20 d e g flow passing near cy l inder sur face 

(24) 

(25) 

H Y R 
\ 
V Ml • • - v * - ^ \ 

where the velocity components, E and Z , are in the £ and f di -
rection, respectively, F ig. 7. I t is instructive to consider the 
angle, a = t a n - 1 (F/E), that the flow makes with the cross-
wise plane. 

O n the diametral plane in the flowwise direction (i.e., f = 0) 

(b) fi = 2 0 d e g f low passing abou t 1 in. a b o v e cy l inder 

(26) 

(c) /3 = 6 0 d e g flow passing near cy l inder sur face 

« 

(d) (3 = 6 0 d e g flow passing a b o u t 1 in. a b o v e cy l inder 

Fig. 9 Dye markings in wakes of a 1.5-in-dia y a w e d cylinder; Re„. 
11,000; f low from right to left; side v i e w on left, top v i e w on right 
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this term < 0 then a wi l l exceed fi and the flow wil l deviate to-
ward the rear or downstream end of the cylinder. After rear-
rangement this inequal ity becomes 

2tt£ 
cos < 

a (Sinh?)/(Sillh2?) (28) 

2tt£ 
Condit ion (28) is satisfied for values of cos that might be 

a 
substantial ly < 1 — t h a t is, for fluid flowing through the region 
generally above the lower vortex tubes. Conversely, as the flow 
approaches the region directly above the upper vortex tubes, it 
wi l l (at some point) have to deflect toward the front or up-
stream end of the cylinder. 

T h u s the vortex centers move in a straight l ine at an angle 
(ct — /3) with the free stream in the downstream, or rear, direc-
tion. W h e n a f luid particle moves over the surface of the C3'linder 
and separates, i t first deviates to the front; then it deviates to 
the rear as the sheet upon which it rides rolls inside the vortex 
street. A particle thus moves i n a corkscrew motion about the 
path of a vortex center. T h e fluid particles outside the vortex 
street meanwhile move i n paths that oscillate i n a near ly hori-
zontal plane. T w o sets of dye trails, for each of two j'awed 
cylinders, i l lustrate this behavior i n F i g . 9. 

Conclusions 
1 T h e spanwise separation point is independent of /?, and it 

would occur beyond the crosswise separation point. 
2 T h e Strouhal number and pressure drag coefficient can be 

evaluated for the crosswise component of flow, as though the 
spanwise flow did not exist. (The same would be true for the l ift 
coefficient.) 

3 Conclusions 1 and 2 become inaccurate near the low end 
of the vortex shedding regime (Re„ < 100) owing to the deterio-
ration of the boundary layer at such low Re„. 

4 [CD]I is somewhat greater than CD cos2 (3 as long as the s k i n 
friction is important since the influence of /3 upon CD/ is less than 
its influence upon CDp. 

5 Particles in the cyl inder wake describe counterrotating 
corkscrew paths within the upper and lower rows of the vortex 
street. 
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