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Abstract, That the form of the dimensionless unit hydrograph is very nearly independent
of watershed properties implies that it should be predictable with a minimum use of such
properties. Such a prediction is formulated in this study, using Boltzmann statistics. The
prediction shows that a characteristic time is the only important watershed property and that
the shape of the watershed has only a minor influence on the form of the hydrograph. The
resulting theoretical hydrograph is compared with observations made in two watersheds and is

found to represent them well.

Introduction. Much attention has been given
to the use of the unit hydrograph during the
past 30 years. This device has proved extremely
helpful in the prediction of flood behavior and
other waterway action. The use of hydrograph
synthesis and the study of the related physical
mechanisms have recently been reviewed by
Laurenson [1963].

The present inquiry is concerned with the
idea of the dimensionless unit hydrograph (see,
eg., the work of Bender and Roberson [1961]
and Bender [1963]). This idea 1s that the usual
hydrograph for storms of short duration,

Q = 1. (¢, storm intensity, watershed properties)
1

can be written in dimensionless form:

g 2

and that the latter expression will apply to any
watershed. ¢) is the discharge rate; ), is a charac-
teristic of the storm intensity—usually the peak
rate of discharge following the storm; and f,—
sometimes called the ‘time lag’—is a charac-
teristic of the particular watershed. Usually ¢,
measures the breadth of the hydrograph; it
might, for example, be the time elapsed between
the incidence of the storm and the maximum
discharge.

That the observed function f,(¢/t,) is very
nearly the same for any watershed strongly
suggests that it might be derived by considering
a minimum of physical detail of the watershed.
Furthermore, the form of the observed function

appears to closely approximate that of the
Maxwell-Boltzmann molecular speed distribu-
tion. That is,

[0/8.1. = Cit/0) exp = Cili/e)] (8
This fact even more strongly suggests that the
problem might be solved with a minimum
knowledge of the watershed properties if Boltz-
mann statistics are used.

Analysis. Let us suppose that (N + M)
raindrops constitute a sudden storm over a
watershed. By ‘sudden’ we mean that the storm
is brief with respect to the characteristic time
t,. Of these raindrops, M disappear into the
ground or evaporate into the air and N eventu-
ally find their way to the gaging station. The
conventional hydrograph for this storm can
be recast in the following way: the storm run-
off past the gaging station can be interpreted
in terms of the number of raindrops N, in each
of a series of time increments of duration At.
The result is a histogram (Figure 1).

Each of the N raindrops will have the same
a priori probability of reaching the gaging sta-
tion during the sth time increment. Whether
or not it does will depend upon where it lands
and what obstacles it encounters. It will be as-
sumed that each raindrop is distinguishable
from and independent of the other raindrops.

Now let us consider the slug of water com-
posed of the N, raindrops that pass the gaging
station during £, to £,. We must specify the
g, ways in which these drops could have found
their way to the gaging station. It is reasonable
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RAINDROPS

PBig. 1.

The hydrograph interpreted as a
raindrop histogram.

to assume that there are, on the average, a
constant number of ways by which a raindrop
must leave each unit of watershed area. Fur-
thermore, the time required for a raindrop to
arrive, after traveling any distance [, to the
gaging station, is approximately proportional
to ;.

Finally, in order to specify g, in terms of &,
it is necessary to specify the amount of area
swept out by I;. This area should increase
roughly as the square of [, (although for a
particularly long, slender watershed it might be
more nearly a linear function of ;). Accord-
ingly, we shall assume that

0 ke

or, since l; « ti,
i = Atlz (4)

where A is some constant.

We must now ask: ‘How many ways can
the set of distinguishable objects, (N1, N, = * *,
Ny, - - ), be selected from N distinguishable
objects, if there are g, distinguishable ways of
placing N, objects in the ith cell?” This is a
well-known problem in Boltzmann statistics.
The number of ways W (see, eg., Davidson
[19627) is

@ N;¢ @ 2\Ni

= N! 9 AT “(Ati s
W N.HM! A!H N (5)
The particular set of numbers, (Ny, No, * * *,
Ny, - - ), for which W is maximum will be the
most probable one. Since the numbers involved
are very large, the most probable distribution
will be certain for all practical purposes. It
then remains to maximize W (or, since it is
easier to do so, to maximize In W), subject to
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the appropriate constraints. The first of these
is a simple conservation statement:

53 N.=N (6)

i=1

The second constraint is one which characterizes
the particular watershed with the root-mean-
square time t.m, of the physical hydrograph.
From the definition of ¢,ms,

DN (6a)
i=1

The use of Stirling’s approximation to the
value of factorials of very large numbers in
(5) gives

e AN

InW=NhN-—N

+ i [N; In (Atiz) — N, In N, + N, (5‘1)

1=1

Equation 5a is maximized with the aid of
Lagrange’s method of undetermined multipliers:

dIn W

= i [In (At,®) — In N,;] dN,; = 0 (7

1=1

and from the constraints:

— 2 adN; =0 (8)
- i Bt.2 dN; =0 (9)

where —a and —f are undetermined multi-
pliers. Adding (7), (8), and (9) gives

i) [In (N./At3 + o + Bt.°] AN, = 0 (10)

Since the coefficients of the dN; must vanish
identically,

N: = (4e [t exp (—Bt")]

or from (6),

Neo =N i z:I_l 2
N _[;ti exp (—Bt:") t;

-exp (—Bt.%) (11a)
Finally, the undetermined multiplier 8 should

be evaluated. To do this, we first consider the
sum

(11)
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TABLE 1. Rainfall and Runoff in the Mill Creek
Watershed (Illinois) on June 2 and 3, 1954
End of Hourly Per Cent,
Hour of Rainfall, Runoff, of
Observation inches THE @102 Q:otal
2 B-M: 0
3 0.01
4 0.01
5 0.02
6 0.45
7 0.14
8 0.10 0 0
9 0 0.097 0.57
10 0.396 2.31
11 1.764 10.33
12 2.465 14.42
1 AM. 2.66 15.61
2 2.555 15.00
3 2.068 12-12
4 1.726 10.21
5 1.284 753
6 0.900 5.27
7 0.594 3.47
8 0.360 2.10
9 0.180 1.06
10 0 0
Totals 0L73 17.06 100.00

Notes: The runoff, based on the 62.5-mi* water-
shed, is 0.1175 in. The values of f.,., based on
= 00630 PINL 00 P.M: sand 7:30 PoML;
are 8.97 hr, 7.67 hr, and 7.20 hr, respectively.

t.* exp (—Bt.)

™

-

i=

N Z i exp — (B8 A’
i=1

This ean be approximated with an integral,

i t.° exp (—Bt°)

=l

AT f i exp — (8 A di
0

Vo

4 At 2

Yout? exp (=B A = g
i=1

By the same token, the first and second con-
straints give

©

Ae® Dt exp (—BtD)

i=1 t=1
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or

N

Mo

b (13)

and

Z tizN,; = Ae_a Z ti4 exp (‘—6t12)
i=1 i=1
or

3Vr Ae’"

—5/2
8 At o
Eliminating Ae™® from (13) and (14) gives

2
s N

(14)

Sl
gy (15)

and substitution of (15) and (12) into (1la)
gives

T sl 5
AN—' SV e e

* exXp [_%(ti/trm8>2] (16)
Equation 16 can be approximated as
1)) = V54/m (1/ tems) (t/ trma)*

o (U G

TABLE 2. Rainfall and Runoff in the Mill Creek
Watershed (Illinois) on May 24, 1944

End of Hourly Per Cent
Hour of Rainfall, Runoff, of
Observation inches ft2 X 108 ke
10 A M 0 0 0
11 0.40 0 0
12 0.01 0.072 0.82
1PV 0 0.414 4.71
2 1.433 16.30
3 1.670 19.01
4 15577 17.94
5 1271 14.46
6 0.940 10.70
7 0.641 7.29
8 0.378 4.30
9 0.270 3.07
10 0.094 1.07
IRE 0.029 0.33

12 0 0

Totals 0.41 8.789 100.00

Notes: The runoff, based on the 62.5-mi? water-
shed, is 0.0605 in. The value of ¢, based on
t = 0 at 11:00 A.M,, is 5.71 hr.
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TABLE 3. Rainfall and Runoff in the Bay Creek
Watershed (Illinois) on June 22, 1952

End of Hourly Per Cent
Hour of Rainfall, Runoft, of
Observation inches ft3 X 108 Qiotal

12 0
1 AM. 0.30
2 1.50 0 0
3 0.04 1.26 3.78
4 0 3.438 10.31
5 5.472 16.42
6 7.776 23.33
7 8.748 26.25
8 3.78 11.34
9 1.242 3.73
10 0.774 2.32
11 0.432 1.30
12 0.234 0.70
1B M 0.1296 0.39
2 0.0432 0.13
3 0 0
Totals 1.84 3333 100.00

Notes: The runoff, based on the 39.6-mi? water-
shed, is 0.362 in. The value of ¢, based on ¢ = 0
at 1:30 A.M., is 5.16 hr.

where the normalized distribution function f(t)
is

SNy o)
Ok Pl e e

and where, in turn, N(¢) is the limiting con-
tinuous distribution of the N,’s. The right-hand
side of (18) is obtained when we note that N
can be expressed as total discharge (ft3 of rain)
and N (t) as the discharge at any time.

Equations 17 and 18 will become the dimen-
sionless hydrograph that we seek, when they are
multiplied by #,ms.

Comparison of prediction with observation,
and discussion. Rainfall and runoff data are
presented for two relatively intense storms over
each of two watersheds,! in Tables 1 through 4.
Sketches of these watersheds are presented in
Figure 2. The data have been expressed in
terms of the distribution funection f(¢), as sug-

1T am indebted to Dr. D. L. Bender for provid-
ing these data. They were, in turn, obtained from
the U. S. Geological Survey, Surface Water Branch
at Champagne, Ill., and the U. 8. Department of
Commerce, Weather Bureau.
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gested by (18), and plotted in Figures 3 and
4. The predicted distribution, equation 17, is
included on these curves.

On each curve the assumed time of inci-
dence of the storm and the corresponding value
of t.ms are noted. Since none of the storms was
absolutely sudden, some judgment had to be
employed in naming the effective time of inci-
dence. The proportion of rain that goes into
the ground is probably highest at the beginning
of the storm, so that the time of incidence is
shifted to later times insofar as runoff is con-
cerned.

A second difficulty in the specification of zero
time stems from our ignorance of the motion
of the storm in relation to the precipitation sta-
tion and the watershed. When, for example,
the storm passes the rainfall station before it
arrives over the watershed, an erroneous time
decrement appears between the precipitation
and runoff data.

The first three curves (Figures 3a, 3b, and
3c) therefore compare results for three assumed
zero times over the span of 1 hour. The best
correspondence between observation and pre-
diction occurs when ¢ = 0 at 7:30 P.M. The

TABLE 4. Rainfall and Runoff in the Bay Creek
Watershed (Illinois) on June 18, 1942

End of Hourly Per Cent
Hour of Rainfall, Runoff, of
Observation inches f38E108 Qi
2 A M. 0
3 0.06
4 0.91
5 0.03 0 0
6 0 0.03 0.10
7 2.23 6.72
8 5.4 16.22
9 8.06 24.23
10 el 21.36
11 4.86 14.60
12 2:03 8.81
1P.M 1.29 3.87
) 0.61 1.84
3 0.40 16210
4 0.24 0.72
5 01 0.32
6 0 0
Totals 1.00 3327 100.00

Notes: The runoff, based on the 39.6-mi? water-
shed, is 0.362 in. The value of #,s, based on ¢ = 0
at 5:00 A.M.,, is 5.20 hr.
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Fig. 2. Physical arrangement of observed watersheds.

three remaining curves (Figures 3d, 4a, and
4b) represent single estimates of zero time.
These comparisons could doubtless be improved
slightly by making minor changes in zero time.

Such questions of adjustment are not of first
importance, however. The comparisons are re-
markably good in all cases. The extent to which
(17) fails or succeeds must be credited to the
analytical model. The model incorporated two
physical assumptions in fixing ¢;, namely that
t, was proportional to /; and that it subtended
an area proportional to ;2.

The latter restriction can be relaxed somewhat
by assuming instead that ¢, subtends an area
proportional to ,". If the analysis is then re-
peated, with the general exponent n substituted
for 2, the resulting distribution function is

f(§) = {I@L) (Lhztlymi i (tt>
2 J

e __n+1( t>2] /
mp[ 5 o (19)

which reduces to (17) when 7 is 2. When n is
only unity, (19) becomes

1) = (2/teme) (8 teme) €xp [=(8/tma)’]  (20)
It is fortunate, however, that (17) and (20),
while representing vastly different physical as-
sumptions, do not differ greatly from one
another. The comparison between these cases
is shown graphically in Figure 5. The two curves
generally differ by less than 209, except at very
early times.

A still more accurate representation of water-
shed shape could be obtained by making the
exponent n dependent upon ¢,. This could im-
prove the prediction slightly; however, it would
result in an equation of the form

Q/Qu = trmsf(t) = f?(trmsy t/trms> (21)
This implies that the form of the hydrograph
should, in general, change with the watershed,
but Figure 5 implies that any such effect will
be small.

The present derivation shows that if the
form of the hydrograph depends upon the shape
of the particular watershed, it does so only in
a weak way. The statistical mechanical method
has clearly provided a ‘first-order’ explanation
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t =0 AT 6:30PM
trms = 8.47 hr

PREDICTED

= el

t/trms

a) JUNE 2,1954 (t=0 AT 630PM)

t=0 AT 7:30PM
trms = 7.20 hr

OBSERVED

PREDICTED

- [EQ. (7]

t/trms

C) JUNE 2, 1954 (1=0 AT 7:30PM)

t=0 AT 7:00PM

16 tems = T-67 hr
4l .— OBSERVED
ek

e

iy

= PREDICTED

~ o8l c Elun)

o

061
.04}

.02}
o | |
o | 2
t/trms

b) JUNE 2,1954 (t=0 AT 7:00 PM)

£(1), (hr)™!
o
=

t=0 AT 11:00 AM
foms = 5 Zlihy

OBSERVED

PREDICTED
-« [E0. u7i]

d) MAY 25, 1944

I'ig. 3. Comparison of predicted and observed hydrographs at Mill Creek, Illinois.
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t=0 AT 1:30 AM t =0 AT 5:00 AM
trms = 5.16 hr it TGN
251 .25
/oassavsc
S 20 ool .— OBSERVED
1} 1
= 7=
= _“=
=15 PREDICTED =5
< == [0 (i7) - PREDICTED
= : ! £ ~ [ea. u7]
=0 o
051 05l
! ] ! t o ! |
9 o | 2 0 | 2
t/trms t/trms
a) JUNE 22, 1952 b) JUNE 18, 1942

Tig. 4. Comparison of predicted and observed hydrographs at Bay Creek, Illinois.

EQ. (19) WITH - n= |

" (OR EQ. {20))

0.8 —

EQ. (19) WITH n=2

. HORCECIZT}
Oh6t

1rms vl

0 |
0 | 2

t/tvms

Tig. 5. The effect on the hydrograph of varying n, where t; = 1"

for the dimensionless unit hydrograph. Further- uted information and helpful criticism to this in-
more, it is a tool that is susceptible to subse- quiry. These include Professors William Band
quent, refinement (Physics Department), Donald L. Bender (Civil
g Engineering Department), Paul L. Meyer (Mathe-
Acknowledgments. Several members of the matics Department), and E. Roy Tinney (R. L.
Washington State University staff have contrib-  Albrook Hydraulic Laboratory).
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