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Introduction 

The ideas to be developed here have their origins in two earlier papers [l J and [2J. 
In [l J the methods of Boltzmann statistics were used to predict the runoff of rain 
from a watershed. The second paper extended and generalized the prediction given in 
the first paper. It showed that the so-called generalized gamma distribution, which 
included most of the commonly used and physically plausible distribution functions 
as special cases, could be obtained from a simple statistical model. lYe shall first 
review these ideas briefly, and then formulate the 'thermodynamics' that would 
describe this family of non-molecular systems. 

Suppose that a set of independent and distinguishable particles or events are 
distributed among values of some random variable, t. These particles (or events) obey 
the following physical limitations: 

1. Their total number is fixed . 

.£Ni =l. (1) 
i - O N '. 
2. A pth moment, which we shall call tr>llP' is known. This can be a simple mean 

((3 = 1), a root-mean-square, ((3 = 2, trmp = trms ), or any other moment 

~ N; fJ fJ
i~ Ii Ii = (trmp) . (2) 

3. The physical system to be described is such that there are gi ways for the 
particle to be (or the event to occur) in the interval [ti -1' tJ We shall restrict atten
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tion to systems for which gi is of the form 1) 

g, = A tf - l = (A Llt",- I) i,," - 1 	 (3) 

where A is a constant and LIt is the increment of t;. 
What has been described is a system of distinguishable or 'localized' boltzons, 

with a fairly general sort of degeneracy and a more general specification of the 
variability of the distribution (equation (2)) than is used for Boltzmann statistics. 
The thermodynamic probability for such a system is well known, and in this case it 
takes the form: 

00 (A t"- I)N;
HI = N I n .-,---'-  (4) 

. i- O Nil 

Maximization of W subject to constraints (1) and (2) gives the expression for the 
distribution numbers _. the (:v JN)'s - that we can expect t o obtain in the ~ystem. 
In the continuous limit this expression becomes the generalized gamma distribution, 

(3 (17.)"",1 1}( t )"'-1 r 17.( t ),1]f(t) = - -- -- exp - - --	 (5){ r(17./(3) (3 trmfJ trmfJ .. (3 trmfJ , 

It is important to recognize that the constants in equation (5) are not, in general, 
arbitrary. We are considering systems in which tr mfJ is known ahead of time - both its 
magnitude and the correct value of ;3. The constant, (1., is the result of an a priori 
physical statement (possibly an assumption). By way of illustration, suppose that we 
wish to describe a t equal to the molecular speed, C. The average energy of a particle, 
m C;11,,/2, is known, so condition (2) takes the form' 

co hT' ) C22 _l\~i (~C2 = ~"...!'!.!.... 	 (2a)
,-0 N 2 ' 2 

'where m is the molecular mass. The degeneracy of (i is known from quantum 
mechanical considerations to be 

:n; '2 (3a)gi = 2~ 

Thus (3 = 2 and (1. 3 for this case and the system described by equations (1), (2a)C 

and (3a) is simply a Maxwellian ideal gas. Equation (5) reduces to 

f(C) =-1 V-
54(--C)2 exp [ - -3 ( - C )2] , (6) 
:n; C 2 CCrms rms 	 rms 

the Maxwell molecular speed distribution. 
A few of the other familiar distributions that are included as special cases of 

equation (5) can be listed briefly: 
the Wiebull distribution ((3 = el) 

t ) ",-1 [
I(t) = ~.( - exp ( -tr:J a] , 	 (7) 

trma . trma 

1) 	 This restriction will apply throughou t this discussion. Possibly the whole endeavor can be 
opcned to a broader physical model, but that is beyond our present scope. 
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the rainfall hydrograph [1] (fJ = 2) 

/ (t) = _ 2 ._ - ( -IX ) a /2 - 1 ( - t ) a - I exp l· - --IX ( - t ) 2] , (8)
F(IX/2) 2 trms trm s 2 . Ir m' , 

the f,amma distribution (fJ = 1) 

rx" 1 ( t )a - I [ (t)1Itt) = _ ._-- - - exp - rx - (9)
F(rx) t t . ' mean mean tmeall 

the Rayleigh distribution (fJ = IX = 2) 

/ (t) - 2 ( - t) exp [(- t- ) 2] (10)= 
trms tTms trms ' 

the exponential distribution (fJ = rx = 1) 

/ (t) = - ' -1 exp [- -.I]- , (11)
ttmean mean 

and the Maxwell molecular velocity distribution (fJ ' .. 2, rx ,1) 

1 1/ 2 [1 · t \ 2]t(t) = - V- exp o - {.-- - I (12) 
I,," s Jr 2 \trmsl 

Two Applications 

Rain/all runoff. In Ref. [l J, the 'event' under consideration was the elapse of 
time, t, betw·een the falling of a raindrop on a watershed and its eventual arrival at a 
gaging station at the outlet of the watershed, A root-mean-square (fJ = 2) time of 
arrival was taken as the characteristic parameter of the watershed. The degeneracies 
were then established by the following physical considerations: In a long slender 
watershed the number of possihle \Nays a raindrop can get to the gaging station 
increases in direct proportion to the distance it falls from the station. Thus gi ~ ti 
and (J. is 2. . 

In a fan-shaped watershed, the area subtended by a given distance is proportional 
to the :;quare of that distance, Thus the number of alternative paths for the raindrop 
is much larger and gi ~ 17. In this case rx is 3, The resulting distribution of runoff was 
equation (8) with rx equal to 2 or 3. The comparison of this prediction with measured 
runoff was quite good. Figure 1 shows typical comparisons from )~, for a rea"onably 
fan-shaped watershed. 

Income distribution. Another application currently under study is the use of the 
generalized gamma distribution to predict the distribution of personal annual income, 
The characteristic parameter of the distribution of income in any given year is the 
mean (fJ ~. 1) income for that year, $, ,,,here t = $ will designate the annual income 
of an individual. 

The degeneracy in this case takes on a somewhat subtle meaning. It represents 
the number of ways in which a man, who can earn $ dollars per year, is able to earn 
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this income. Since income is probably closely correlated with a man's capability, 
we expect that more of the existing opportunities are within the grasp of the men who 
or,cupy the higher income levels. If the year is a 'fat' one, there will be many existing 
opportunities; if it is ' lean ', therE' will be few. Accordingly we assume that 

gi "'" $"- 1 (3b) 

where a. is a kind of 'job accessibilit y number'. It varies from a sma]] positive valuE' in 
lean years to a high value in fat ones. 

t=o AT 7:30PM 


trms = 7 .20 hr 


I 
~ ~ 

.c..c. 

~ 
..... 

o 
2 

t/trms 

JUNE 2, 1954 

Figu re 1 
A t ypical comparison between predicted and observed runoff from a fan-shaped water shed in 
Mill Creek, Illinois (from reference [IJ). 

The result is the gamma distrihution (equation (9)). Typical predictions are 
shown for the years 1935 and 1962 in Figure 2. At this writing, accurate descriptions 
of the words 'lean ' and 'fat' are under consideration. How('ver, there can be no 
doubting the relative wealth of these two years. The figure shows that for appropriatf~ 

values of a. (a large one for 1962 and a small one for ] 935) the comparisons are quite 
good. 
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"I II 	 II Ita) Distribution func!ion for 1935-6 -- a eon year b) Distribution function for 1962 __ a fat year 

Figure 2 

Comparison of equation (9) w'ith observed income data for a) a ' lean' year and b) a 'fat' year. 


An interesting consequence of the theory is that for the limiting case of the 
wealthiest possible yrar (that is, the largest possiblE' 0:) we can show 

Limit f($ ) = 0(1) 	 (13) 
1:' ... CO 

where 0(1) is t he Dirac delta function with an argument equal to unity. Thus as l imes 
bec()me very good, income tends to equalize at the mean value. In very bad time", there 
are, on t he other hand, far more people earning less than the mean and only a few 
very wealthy people who keep the mean Up2). 

In the preceding discussi()n we have found th at independent distinguishable 
events or particles, suhject to s()me simple constraints, obey the generalized gamma 
distribution. It turns out that if the particles are indistinguishable, and if gi ~ N i ' 

then nothing will change in these results . The factor of N I in equat ion (4) wi ll be 
omitted, but equation (5) ann evprything that fo llows it will remain the same. This 
wi ll be an important cons ideration in the suhsequent development. 

The Fundamental Equation of the System 

We now wish to develop the thermodynamic description of systems which obey 
the generali zed gamma distribution in a broader way than has been done before. 
Such a description must begin with the fundamental equations of such systems. 

A fundamental equation for a macroscopic system is the expression from which all 
thermodynamic information may be obtained. It can take many forms; but for simple 
compressible systems in which the energy, P, the volume, V, and the number of 
particles (or moles), N, are independently specifiable it can be written as 

S S(U, V, N ) 
(14)

k k 

2) 	 T hus Horatio Alger's story is not a parable of our own wealthy times - a fact that some 
conservatives often fail to recognize. It is of course important to recogni~e that equation (13) 
is an outgrowth of equation (3) which can be tru e only if free enterprise is a dominant force 

4 
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where 5 is the entropy of the system and k is Boltzmann's constant. This expression 
in tum provides the link between the macroscopic and microscopic desniptions because 

k
5 

= InW. (15) 

When the correct quantum mechanical and statistical description of a mon
atomic ideal gas is used for W in equation (15) the resulting fundamental equation is 
the important Sackur-Tetrode equation 

-5- -_ N { In [( 2 m n kT) 3/2 --kT] + --5 }' (16)
h2k P 2 

where m is the mass of a molecule, It is Planck's constant, and T and p are the system 
temperature and pressure. Equation (16) is the form of the Sackur-Tetrode equation 
for a gas composed of indistinguishable monatomic particles, and it requires that 
gi ~ lV i • 

We can develop a fundamental equation equiv alent to the Sackur-Tetrode 
equation for generalized gamma distribution systems. Such systrms are analogous to 
monatomic ideal gases because only one mode of existence: of t is acknowledged. For 
the analogy to hold, \-ve must also view the events or particlb as indistinguishable, 
but we have already noted that this will involve no loss of generality in our results. 
To obtain the fundamental equation, we divide the right-hand side of equation (4) 
by N! and combine it with Stirling's approximation and equation (15). The rrsult is 

5 co g 
- = 1.:N i In - ' + N . (17)
k i- O Nj 

t'sing equation (5) in its finite form 

N { ~ (. 0'.) c</t'J 1 ( t ) ", - 1 [0'. ( t )1 } 
lV' = r(O'./~) 73 t":/I exp - P LIt 

(IS)
trlll/l trr:/3 

in equation (17) and making an appropriate transition from summation to integration, 
we obtain the analogue of the Sackur-Tetrode equation: 

5 {[ T(O'.ip) A ] {J + 0'. }-= N In t"' -- (19)
h {J(O'./{J)ct. /f3 L1tN rmf3 + (J . 

Equation (19) is the fundamental equation of our system. The cell size, LIt, is left in 
this expression, just as the cell size h3/ V = h3 PINkT is left in equation (16). We shall 
have more to say about this point subsequently. 

Equations of State 

Equation (19) makes it possible to generate 'thermodynamic' properties for this 
class of new physical systems. This can be done by analogy with the classical thermo
dynamical property definitions 

_ 1_ = 0(5/k) I . p _ 0(5/k) I . _ L == 0(5/k) I (20)
k T - oU V,N' kT = ---;W- uv' k T oN V,(" 
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where f1- is the chemical putentiaJ "Vhen the known function, Slk, is substituted in 
these definitions and the operations carried out the results are called equations of state. 

In the new system, the meaning of N is unchanged. Since the energy of an ideal 
gas is really just a known moment of the distribution of particles, its prop('r analogue 
in thE' nl'w system is .V 1~",{3. Thus we shall define 

J(:= ]If t~ '" {!, analogous to U , (21) 

Finally, an appropriate parameter equivalent to volume has to be identified. 
To do this let us first trace the role of volume in the ideal gas problem: equation (16) 
is derived by considering the distribution of momentum in a space which has the 
dimensions of (momentum)3 But, by the dictates of quantum mechanics, phase space 
with the units of (action)3 is brokt'n into cells of uniform sizE', h3 . Volume is accordingly 
a comparative factor between the absolute cell size in phase space and the variable cell 
size in momentum space, Thus, 

/It = (2,1 [m CJ)3 = V
h3 

(22) 

where m is the particle mass and ( is its speed. 
Now by way of fixing attention for a moment on one of the new systems in 

particular, let us return to the inrome ui,.;tribution problem. In the same way that 
molecules have access to an increasing numher of modf's of energy storage as the 
number of dimensions of physical space increases, so too do men have access to 
increasing modes of income as the job accessibility number, (I., is increased. Pursuing 
the notion that rlegeneracy is proportional to the (n - 1) th power of the random 
variable in an n-dimensional physical space, we can view (J. as equal to the number of 
dimensions of the 'physical' spacE' of the income problem. 

We might then envision a kind of economic phase space - $ in one direction, and 
some kind of a metric for ex tension in accessibility, in the (J. other directions. The 
independently specifiable volume in this phase space will be called H ", Although H" 
is like h3 in its funrtion, no science of quantum mechanics exists to specify its value 
in this case. Therefore H will remain an arbitrary constant . By analogy 'vvith equation 
(22) we then define a 'volume', E, for income, or for any other of the new systems, as 

H" 
B = (23)

LIt 
so 

LIt = H" (24)
B ' 

The equations of state that we wish to propose are then: 

_ 1_ = iJ( Sjk) I . 'j) iJ(Sjk) I . m a(Sjk) I (25)
k'J - oK B,N' k 'J .aB ,K"V' k'J aN K, B 

where the script variables 'J, 'J) and mare properties that will be analogues to T, p 
and tt, for the new system, If we first substitute equation (24) into equation (19) to 
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get the appropriate form of the fundamental equation 

5_ = iY Jlnl" r((Y.l~) A _K: "_ B] IX+f3l (J ga)
k 1 f3(IX /t9),,/1' Hrt. ~Vl+", i ; -~-I 

then we can immediately f'valuatf' the equations of state for the new systems. They are 

1 IX N 
(26)fJ K -' k'J 

P N 
(27)

k'J 73' 
and 

m S jk IX + fJ 
(28)k'J = N - - fJ - ' 

It is a straightforward exercise to show that for the Maxwell-Boltzmann case, 
equation (19) becomes the Sackur-Tetrode equation and equations (26), (27) and (28) 
reduce to the familiar equations of state : k T = m C;m s/3, pjk T = N /V and 
[i/k T = 5/2 - S /k N. This exercise gives us confidence to proceed in the application 
of our new fundamental equation. We wish first to look at the thermodynamic laws 
for our new systems. Then we shall attempt to put the whole notion into somewhat 
nicer perspective with the help of an example. 

The Laws of Thermodynamics 

Since the laws of thermodynamiC's have their origins in the statistical behavior 
of molecules, and sinCf' the properties we have described evolve from the same 
statistical description, the same laws that apply to molecules will apply to the present 
systems. Accordingly we shall paraphrase the laws of thermodynamics to apply here. 

The phenomenological laws of c1a;::sical thermodynamics are not well suited to 
this use because t hey are couched in t f' rms of such processes a, heating and working. 
It seems an unnecessary exercise to develop far-fet ched analogies for these procpsses 
when the laws can be recast in such a way as to describe only equilibrium end points. 
Accordingly we shall adopt the axioms of Callen [3J and restrict them to single com
ponent systems. The laws that govern the properties, S, B, ]{ and iV, are 

l. There exist particular states (called equilibrium states) of simple :3y"tems that, 
macroscopically, are completely characterized by B, K and N . 

2. There exists a function,S, of the extensive parameters, B , K and iV, defined 
for all equilibrium states and having the following property : The values assumed b~7 

the extensive properties in the absence of an internal constraint are those that 
maximize 5 over the manifold of constrained equilibrium states. 

3. 5 for a composite system is additive over the subsystems 5 is continuous, 
differentiable, and a monotonically increasing function of K. 

The fourth postulate (or third law of thermodynamics) is not relevant to the 
present discussiun since it requires that the system pass through certain condensation (s) 
to anive in a zero-entropy state that is nut describdd by equation (10). 



93 Vol. 22, 1971 An Extension of Statistical Mechanics to Macroscopic Systems 

The first two postulates permit us to paraphrase the conventional relation, 

00 00 

dU = 1:N; de; +1:ci dN j = - PdV + T dS , (29) 
i"" O i - O 

with 
00 00 5 

dK = 1:N i dtf +1: tf dNi = - 'j) dB + (k '3) d -. (30) 
i - O i - O k 

The second postulate also says that 

d (-5) > 0 (31)
k isolated 

and equation (19) dearly satisfies all the requirements of the third postulate 

Example - Rainfall Runoff 

We wish now to talk about the thermodynamics of a watershed. To do so we shall 
take the view that if we change the conditions within one watershed, or go from one 
watershed to another, with a given number, "V, of raindrop.;;, then what we are doing 
is equivalent to changing the thermal environment of a group of N molecules. 

Let us consider only fan-shaped watersheds for the moment. Then CJ. = 3 and 
fJ = 2, and equation (26) gives th(' ' temper' 3), 11k '3, as 

1 3 
(32)

k '3 2 t;ms 

Consider then two ways to change the characteristic time of discharge, trm s ' of the 
watershed : 

One way would be simply to scale th(' watershed up in size. This would stret,b 
the t/s witbout changing the distribution numbers and would be analogous to 7.v'OYk. 

This could be done either by making everything physically larger or by oth('r means 
reducing the force of gravity for example 

A second way to change t,ms would be by changing the distribution numbers 
without altering the scale. This might be accomplished physically by planting trees 
or by defoliating the land. It would occur normally witb the cbanging seasons. Such 
changes would increase or decrease W or S jk, and would be analogous to heat. 

Either kind of change would generally result in a change of temper as equation 
(32) indicates. If we are to make the first kind of change (the result of 'work') meaning
ful we must say what B is in physical terms. We shall simply take it to be the area4), 
A, and allow H to accommodate itself to this definition. The 'pressure' is then 

'j) _ k '3 N _ 2 t;ms N 
(33)- - A- - - 3- A 

3) The word 'temper ' is used here in accordance with a growing feeling that it is an appropriate 
name for the Lagrangrian multiplier, 1,k T , in conventiona l statistical thermodynamics. 

4) Actual ly it might be feasible to do something more elaborate with the scaling of the watershed . 
The gravity, for exampl e, might be included for its influence on the effective size. 



94 John H. Lienhard and L. Berkky D avis, J r. Z.-\MI' 

in accordance with equations (27) and (32). Then equation (30) gives 

o 5
d(i'lt- ) = - k 'J N dinA· - k 'J d - (34)• ~ k 

If we include equation (32) and integrate the result we obtain 

A t;tnS 5 - 50 
-:-~- = exp - - - - (35)

(A t~ms)o k :V 

where 50 is the entropy for which A t~>ns = (A t;ms)o' 
Equation (34) shows that changes of time of runoff are the sum of a pure srale 

effect and a pure disordering effect. The latter is the only one WE' would consider in 
any single watershed; however, the former would hold considerable interest if we set 
out to compare similar watersheds of different sizes. Equation (35) is an equation of 
state that relates area, rms time, and entropy to one another. We must be careful to 
recognize that equation (34) is restricted to reversihle processes, or processes in which 
equilibrium is maintained at earh point, and the fundamental equation (19a) is always 
valid. Equation (35) is not restricted in this way, however, because it descrihes only 
equilibrium end points. 

Equation (35) shovvs the relation between area and trm s for watersheds that can 
be transformed into one another by reversible processes, This, as we have noted, 
would entail simple changes in the scale of watersheds. In such cases, 

,.....,A- (36)Irms 113 

Reference [1] gives data for two hydrographs for each of two Illinois watersheds 
in late Spring storms - one for each watershed in the early 1940's and one each in the 
early 1950's. If we call the watersheds, no. 1 and no. 2, then (/11 /.112)113 = 1.17. In the 
early 1940's, (trms)trm s,) was 1.11 which implies that the watersheds were comparable 
in surface. But in the early 1950's (trm s,/t"ns') was 1.4 owing to an increase in Irms ,· 
This implies that some kind of gross change in the surface of no. 1 had occurred. 

While this illustration may be somewhat thin in terms of data, it serves its 
purpose which is to show how a thermodynamic analysis of a stochastic system might 
generate new information or new modes of analysis. Finally, let us see how it might be 
possible to make direct application of equation (31). 

Suppose that N raindrops were constrained to run off of only one side of a fan 
shaped reservoir. Then suppose we 'released this constraint' and made the other side 
available to these drops as well (i.e., suppose the fan were to be opened). The function 
K c= N t;ms would be constant and equation (34) would give 

iJ (5/k) I = !!... = positive (27a) 
~KN A 

indicating that 5/k WOUld, indeed, increase. 
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Conclusion 

The statistical mechanical description used to represent the behavior of ideal 
gases can be extended to describe the behavior of systems composed of macroscopic 
elements. These elements are treated as indistinguishable, degenerate boltzons. 

Such a desniption has been carried out subject to conditions given in equations 
(1), (2) and (3). A fundamental equation for this broad class of systems has been 
derived and the equations of state have been written. Two pxamples have been 
described to show how these systems of macroscopic dements might exhibit behavior 
analogous to thermodynamic behavior of gases. 

It will be in the exploration of examples that the importance of this idea can 
finally be properly assessed. We have touched upon two physical problems in this 
paper, and are turning our attention to several others. Consideration is presently 
being given to a more complete development of the income problem. Further thought 
has and is also being given to such diverse matters as : 1. the grade-point average 
distribution of a system of students, 2. the size distribution of spray droplets{, 
3. the failure of components in either time or stress and 4. the distribution of numbers 
of airplanes shot down by WWI air aces. 

The use of statistical mechanics to descrihe molecules does, after all, require the 
abstraction of thermodynamic meanings to a point that is very general indeed - to a 
point at which the description is no longer closely wed to the nature of molecules - to a 
point at which something altogether different from molecules might just as well be 
under description. It is our hope that the broader use of statistical mechanics to 
predict the distribution of all sorts of random variables will fruitfully bl; undertaken 
in the future . 

Nomenclature 

A undetermined constant of proportionality 
B generalized volume defined as HC1. /!Jt 
C, C i , C molecular speed, subscripts i and "112" denote ith-Ievel, and root-meanrms 

square , values 
I (t) distribution function for t 

gi degeneracy described in context of equation (3) 
H genera lized Planck's constant 
It Planck's constant 

summation index i ~ 1, 2,3, ... 
K generalized energy defined as N 1~lilfl 
k Boltzmann's constant 
m molecular mass 

m generalized chemical potential, see equation (25) 
N,N i number of particles, events, or moles. Subscript i denotes ith kvel 

thermodynamic pressure


P generalized pressure, see equalion (25) 

T thermodyna mic temperature 

'J generalized temperature, see equation (25) 


random variable 
Ii va lue of t at the i th level 
trmfJ' I""" I,m"," Imean moments of I defined by equation (2). Subscripts indicate the plh, root-mean 

square, o:th and mean values 
5, So entropy. Subscript, 0 , indicates a reference val ue 



06 John II. Lienhard a nd L. Berk],,,y Davis, Jr. ZAMP 

I.; 

V 
W 

IX 

thermodynamic enc;rgy 
thermodynamic volume 
thermodynamic probability 
number of dimensions in generalized space 
number which determines the m om ent in the generalized gamma d istribution 

f:; energy of the i tb s tate 
;1 area of a watershed 

f' 

Jl 

thermodynamic chemical potent ia l 
$, $; annual income. Subscript dl'notes ith leve l. 
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Zusammenfassung 

Die statistische «thermodynamische » Beschreibllng einer Gruppe von neuen Systemen wird 
entwickelt. Drei Bedingungen beschreiben die Gruppe: 1 . ] edes System hat eine bekannte Be
volkerung. 2. Die Elemente des Systems haben eine einzige wichtige willkurlich verteilte Eigen
schaft, und eines der Momcnte dieser Verteilung ist bekannt. 3. Die E ntartung der verteilten Eigen
schaft ist proportional zu ciner einfachen Potenz dieser Eigenschaft. Das Maxwell-Boltzm annsche 
ideale Gas ist ein Sonclerfall dicser Gruppe. 

Die thermodynamische Beschreibung der Gruppe der Systeme umfasst die Verteilungs
funktion , cine fundamentale Gleichung und Zustandsgleichungen. Zwei typische Anwendungen 
(e ine des R egenflusses, und eine der Verteilung des Einkommens) werden beschrieben. 

(Received: May 28, 1970) 


