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A method is developed for approximating the transverse velocity component in the in-
compressible two-dimensional boundary layer equations. The method is restricted to 
flows that are symmetrical in the transverse coordinate, and it facilitates easy numerical 
integration in such problems as the prediction of jet and wake flows. The prediction of 
velocity profiles and diameters for free exiting Poiseuille flows, under the influence of 
both gravity and surface tension, is then undertaken. Analytical results obtained by the 
present method are found to agree very closely with experiments. The experiments also 
show that, in low Weber number situations, contact angle at the exit plane can dominate 
the early relaxation of the exit profile. 

Part I — A p p r o x i m a t e Method of Solution of Equations 
Introduction 

W E shall first describe an approximate method for 
solving the boundary-layer equations and then use it to determine 
the behavior of exiting Poiseuille flows under a variety of con-
ditions. 

The solution is accomplished by eliminating the transverse 
velocity from the incompressible two-dimensional boundary-layer 
equations, with the aid of the continuity equation. This leaves a 
single, second-order equation in a single dependent variable. The 
approximation of the transverse velocit}' component is similar to 
Oseen's approximation in slow flows; but the inaccuracy of the re-
sulting solution will be less than the original approximation to the 
transverse velocity component. 

The value of the method lies in that it makes certain difficult 
problems solvable bj' a simple numerical integration. Since the 
method includes a limitation on boundary conditions that gen-
erally restricts it to symmetry in the transverse coordinate, it can 
be used to describe such configurations as jets and wakes. 

This approximation is a generalization of a device used by Brim 
and Lienhard [l]1 in a recent study of the behavior of free jets 
leaving Poiseuille tubes. The generalization will make it possible 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Fluids Engineering Division and presented at 

the Fluids Engineering Conference, Philadelphia, Pa., May 6 -9 , 1968, 
of T H E A M E R I C A N S O C I E T Y OF M E C H A N I C A L E N G I N E E R S . M a n u s c r i p t 
received at A S M E Headquarters, February 2, 1968. Paper No. 
6 8 — F E - 1 4 . 

to include effects of gravity and surface tension in this problem, 
and hopefully to treat other similar problems. 

Development 
We shall nondimensionalize the variables as follows: 

u = u„/Ua; v = w Re/C/o; P = Pp/pU„2 
(1) 

x = a^/LRe; y = yp/L or r = rp/L 

The subscript p denotes the physical variables, and the dimen-
sionless variables are unsubscripted. Unexplained terms are de-
scribed in the Nomenclature section. 

The two-dimensional boundary-layer equations with pressure 
gradient and gravity forces become, under substitution of equa-
tions (1) 

uux + vuu = u,JU - - Re/Fr^ (2) 

ux = -«„ (3) 

Likewise, we obtain for the axisymmetric case 

uux + vu. = [(rur),]/r - - Re /Fr^ (4) 

ux = — [rv\Jr (5) 

We now wish to devise a reasonable approximation for v in the 

Nomenclature 
/ M = arbitrary function of x a tube; equal to U0 for exiting y = dimensionless transverse (or ra-

Pi- = Froude number, Uo2/gL Poiseuille flow dial) position, yp/L 
s' = acceleration of gravity U0 = characteristic velocity A = dimensionless outer radius of a 
L = characteristic length U„ = free-stream velocity free jet 
P = dimensionless pressure, Pp/pUo1 u = dimensionless axial velocity, <5 = boundary-layer thickness at trail-
r = dimensionless radial coordinate, iip/U„ ing edge of a flat plate 

r„/Llie ii = dimensionless average axial ve- P = density 
R = radius of a tube; R is L for exiting locity O" = surface tension 

Poiseuille flow V = dimensionless transverse or radial V = kinematic viscosity 
Rc = radius of curvature in an axial velocity, vp Re/E/0 V = general subscript denoting the 

plane (see Fig. 1) We = Weber number, 2R Ue-p/cr physical, or dimensional, coun-
Re = Reynolds number, UoL/v X = dimensionless axial position, terpart of a dimensionless 
ue = average velocity of liquid leaving Zp/LRe variable 
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momentum equation. We shall do this by first solving it (with 
the continuity equation) for v, using an Oseen type of linearization 
[2] for the inertia term 

uux + mi„ ^ (1) itx + (0)u„ 

This amounts to replacing tt„ with the characteristic velocity, Uo, 
and vp with the center-line velocity (zero) since we are interested 
in symmetrical flows. The resulting momentum equations are 
then 

- g - H 
( f - H ux = [(r«r),] /}' 

Equations (2a) and (3) can be combined, 

(dP 
+ { d x R e / F r ) 

and the result can be integrated with respect to y to get 

uy = -v + f(x) + y [ — - Re /Fr ( f - H 

(dP 
~u>+ y \Tx ~ R e / F l V o r 

v = - vr + J - R e / F r ) (9) 

Equations (9) give the approximate forms of v that we shall 
use to simplify the momentum equation. They will be in error 
in a way that we can assess qualitatively by looking at the effect 
of the simplified eonvective acceleration in equations (2a) or (4a). 
This error will only enter in the coefficient of one term in equa-
tions (2) or (4) after we have eliminated v using equations (9). 
Equation (2) then becomes 

!(!(, — Uy 
(dP \ 

~~ \ ~tix ~ R e / , F l ' ) ^ + 
(10) 

and equation (4) becomes 

( f - H ' uux - !<;- = [(rur\]/r - ( dr ~ Re /Fr ) (1 + ruj2) ( I I ) 

If equations (9) give even moderately reliable representations of 
v, the solution of equations (10) and (11) should be a fairly close 
approximation to u. 

The full approximation of the convective acceleration used in 
equations (2a) and (4a) has been used in the past in this kind of 
problem. Niels Bohr [3] used it direct!)' to get a coarse estimate 
of the rate of decay of exiting Poiseuille flows. Schetz [4] used 
it recently as the basis for an entirely different kind of approxi-
mate solution which he applied to boundary layers. 

Equations (10) and (11), which are of second order in the 
single dependent variable, it, can easily be solved numerically for 
u- when they are cast in the following form: 

(«2), = = 2 [ « , « + « „ - - R e / F r ) (1 + yuu) (10a) 

u= 2 ( l - r J ) 

(2a) 

(4a) 

(6) 

(7) 

u(r,x) 

r=o 
Fig. I Configurat ion of a free jet l eav ing a Poiseui l le tube 

Equations (4a) and (5) can likewise be combined and the results 
integrated. 

uT = + f(x)/r + ~ - R e / F r ) (8) 

The restriction of present considerations to flows that are 
symmetrical in y or r means that uy or ur, and v, must vanish on 
the centerline. The undetermined function f(x) is therefore 
equal to zero and the approximations to v become 

( " 2 ) , = [ « r 2 + [('•«,),]/»• - ( j - - R e / F r ) (1 + n<r/2)J 

(11a) 

The alternative of formulating and solving the complete nonlinear 
partial differential equations for such problems, analytically or 
numerically, can be prohibitively complicated. The problem of 
an exiting Poiseuille jet flow becomes doubly complicated since 
the boundary cannot be specified until after the flow within it 
is known. The present approximation will accordingly be valu-
able if it is sufficiently accurate. 

Exiting Poiseuille Flow 
Brim and Lienhard treated the free jet leaving a Poiseuille tube 

as shown in Fig. 1, although they ignored the gravity term shown 
in the figure. They discovered that the analytical solution of 
equation (4a) for this case happened to have the property that 
«r = — v. Accordingly they used a form of equation (11) in 

which 
/ dP _ 
\dx ~ 

R e / F r ) was as zero and the boundary conditions 

ur = 0 at r = 0 and A; u = 2(1 - r2) at x = 0 (12) 

The outer boundary, r = A, was found by stretching r and u to 
satisfy the condition that the mass and momentum flows at each 
downstream station had to be the same as at the exit plane. 

Mass: 

Momentum: 
J" 

Jo f Jo 

rudr = 1/2 

ruhlr = 2 /3 

(13) 

(14) 

Conditions (13) and (14) effectively made an integral method of 
the approximation since the velocity profiles given by equation 
(11a) were stretched to accommodate them. 

Before considering this solution, we might anticipate how it 
will behave. For this flow, uuz will be negative and less than ux 

near the center; it will be positive and less than ux as r goes toward 
A. The term vuy will be negative everywhere and it will vanish 
at the boundaries. The first approximation will therefore over-
estimate the inertia term everywhere, and profile will change less 
rapidly in the approximation than in the actual flow. The 
second approximation will then be in error to the extent of a 
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Locus of Boundary Velocities 
Data of Brun and Lienhard: 
• Position of Observed Boundary 
A Velocity of Jet at x = O.OI85 
• Velocity of Jet at x= 0.040 

1.0 0.8 0.6 0.4 0.2 0 
Dimensionless Radius, r= r p /R 

Fig. 2 Compar ison of first and second levels of approx imat ion for 
exit ing Poiseui l le f low 

slight underestimation of v in the second inertia term. We would 
normally expect this to slow the relaxation of the flow; however, 
the imposition of integral conditions (13) and (14) will serve to 
compensate this error. 

Fig. 2 compares Brim's and Lienhard's solutions with their 
data; it shows that the prediction is quite accurate. The figure 
also shows the relatively coarse solution of equation (4a) which 
gives the first approximation to v. Clearly the first approxima-
tion, though coarse, is not at all unreasonable. 

The Wake of a Flat Plate 
The wake of a flat plate provides a more severe test of the 

approximation. Fig. 3 shows the configuration; the liquid on the 
center line accelerates rapidly, requiring a large negative v-com-
ponent to satisfy continuity. The inaccuracy in our estimate of 
v will accordingly be reflected fairly strong in the results. 

The free-stream velocity Ua will be used as the reference ve-
locity, U0; the trailing edge boundary-layer thickness, 8, will be 

used as the reference length, L; and ( — — Fr/Re ] will be set 
\dx ) 

equal to zero. The system that we must solve is thus: 

(w2)* = 2 [ « / + M J (106) 

with the following side conditions: 

uJx, 0) = 0; u(x, oo) = 1.0 
(15) 

11(0, y) = the Blasius profile 

Fig. 3 The w a k e of a flat plate 

Plate-

x = x p = 0 
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0.5 1.0 0.6 

Dimensionless Velocity, U = U p / U 0 0 

Fig. 5 Typical velocity distributions in the w a k e of a flat plate 

This system was solved numerically on an IBM 360/50 com-
puter. The Blasius profile was read in numerically, and a simple 
differencing scheme was employed to calculate the velocity pro-
files at subsequent downstream stations. Figs. 4 and 5 compare 
the present results with the early solution developed by Goldstein 
[5, 6] and Tollmien [7], 

Fig. 4 shows that our center-line velocities are within 4 percent 

of these more accurate results, except for very small .r's. Fig. 5 
shows that, because v has been underestimated, our velocity pro-
files spread out somewhat more rapidly than with the more 
accurate integrations. On the other hand, the integral require-
ments (13) and (14) constantly corrected the exiting Poiseuille 
flow computation as it advanced in x. 

Part I I — F r e e Laminar Jet With Gravity and Surface Tension2 

Analys is 
Consider a free laminar jet leaving a Poiseuille tube oriented 

along the earth's gravity field. The tube may either discharge 
upward (Fr carries a minus sign in front of it) or downward (Fr 
carries a plus sign in front of it). 

To work this problem we shall solve equation (11a) numerically 
subject to boundary conditions (12) and continuity condition 
(13). The momentum condition, equation (14), is no longer valid 
since gravity constantly increases momentum as the jet falls, and 
surface tension decreases momentum. Thus the momentum rate 
at any cross section can be equated to the exit momentum, less a 
surface tension term, and plus a gravity term. 

X 
AP 2 

(•2wrp)(pu/)dr„ = - (2rpR2U2) - (surface tension term) 

+ 
Jo J o 

Ap CJX 
(2TT rt)(pg)drp — (16) 

(surface tension term) = irAp2 
a 

A~ 
tr 

Rr 

Journal of Basic Engineering 

and the inverse axial radius of curvature, Rc (see Fig. 1) is 
given by 

R r 1 = 
d-Ap 
dx,,2 1 + (18) 

Substitution of equation (18) into equation (17) and the result 
into equation (16) yields, after nondimensionalization 

I 
A 2 A 2 r i 

r u k h = I - We A 0 Re2(l + [Aj./Re] 2) ! /\ 

+ ^ f « f A - d x d ° ) Fl
' Jo Jo « J 

The surface tension term represents the contribution of com-
pound curvature through pressure inside the jet. The net con-
tribution will consist of two parts, one from circumferential ten-
sion and the other from axial tension 

This more complete statement of conservation of momentum 
must be used in place of condition (14). 

Finally, we must evaluate dP/dx in the governing equation. 
The pressure gradient in the liquid resulting from surface tension 
will be obtained by differentiating and nondimensionalizing the 
bracketed term in equation (17). After substitution of equation 
(18) we obtain: 

(«2) , = 2 
(17) 

u 2 + ([ru, ,]r)/r 

2 This problem was treated in a different way by Ducla and Vrentas 
[8] in a paper that appeared only very recently, and came to my 
attention after this paper underwent review. Ducla and Vrentas de-
veloped a numerical solution based upon equations (4) and (5) and 
obtained strikingly similar results. 

_2_ £ 
We dx \A ~ Re2(l + [A r /Re] 2 ) 3 / 7 Fr 

Re 
(1 + r; « , / 2 ) ] 

(20) 

Equation (20) was solved for u2 on the computer using a simple 
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77 
FLOW 

EQUIVALENT 
FLOW 

1 

UNIFORM EXITING ^ ^ ^ 

1 

up2 = 2 gxt 
+ 9 ' ' U, -m 

0 0 . 0 5 0 .10 0.15 0 . 2 0 

DIMENSIONLESS AXIAL POSITION, x 
F ig . 6 Predicted jet r ad i i for [ R e / F r | * 10 a n d neg l ig ib le s u r f a c e tens ion 

forward differencing scheme. After each step forward the dimen-

sionless mass and momentum rates, I rudr and I ru'dr, 
Jo Jo 

were computed. The subsequent increments of radius and axial 
velocity were then stretched to make these rates satisfy conditions 
(13) and (19). 

Calculated Results 
The results of this computation depend upon three independent 

parameters, Re, Fr, and We. The Reynolds number is em-
bedded in the dimensionless v and x variables, and it otherwise 
appears explicitly in the term Re/Fr and within the surface ten-
sion term. Reynolds number would also emerge as a third distinct 
parameter in the event that viscous dissipation played a role in 
the problem. Middleman and Gavis [9] showed that this effect 
would not be felt for Re > 50. We shall eliminate such low 
Reynolds numbers from consideration in the present study. 

Middleman and Gavis also found that surface tension had no 
influence when We > 100. When this is the case Re /Fr com-
pletely controls the solution. The parameter Re /Fr has the 
significance of characterizing the ratio of gravity to viscous forces. 

Fig. 6 shows a family of predicted jet profiles for —6 
< Re/Fr < 10—that is, for both upward and downward directed 
jets. It is, of course, limited to We > 100 and 50 < Re < 1050, 
where 1050 is the upper limit upon laminar Poiseuille flows. It 
is instructive to compare these curves with the elementary uni-
dimensional theory: 

The equivalent unidimensional flow would emerge from a 
4 

( V 3 / 2 ) R radius jet at — Ue. It would obey the following 
o 

momentum and continuity expressions: 

1.0 0 . 8 0 . 6 0 . 4 0 . 2 0 

Dimensionless Radial Posit ion, r 
F ig . 7 In f luence of g r a v i t y upon v e l o c i t y prof i les at a t y p i c a l s tat ion 
( x = 0 . 0 5 ) w i t h neg l ig ib le su r f ace tens ion 

A = 
/ Re , 1 6 \ " V 

9 ) 
(21) 

When these are combined in dimensionless form we obtain 

Equation (21) is plotted for two cases in Fig. 6. It shows that 
the relaxation of the Poiseuille distribution initially governs the 
form of the profile. After that the curve takes the form pre-
dicted by equation (21), but slightly displaced in x. 

A complete description of the velocity profiles over a range of 
(Re/Fr) 's would be quite cumbersome. By way of synopsis we 
shall only present selected computations. Fig. 7 shows the 
velocity profiles for several (Re/Fr) 's at a typical downstream 
station, x = 0.05. Fig. 8 shows how the center-line velocity 
varies with x for several (Re/Fr) 's. The relaxation of the center-
line velocity into that of the equivalent unidimensional jet is 
illustrated in the figure for (Re/Fr) = 10. This is obtained 
from the momentum relation 

u = V 2(Re/Fr)x + 16/9 

Clearly the center-line velocity relaxes much more slowly than 
does the radius of jet. 

Since surface tension adds two more parameters to the present 
problem—parameters of generally less importance to the early 
relaxation of the velocity profile—we shall only bring it into 
consideration in connection with specific experiments reported in 
the next section. 

Experiment 
The following elementaiy experiment was used to measure jet 

radii as a function of downstream position in an axial gravity 
field. Isopropanol was siphoned from a supply tank through 
0.174-in-ID stainless steel tubing as shown in Fig. 9. The flow 
rate was measured and used to calculate Re and Fr. The physical 
properties of isopropanol are well documented as a function of 
temperature, which was measured during the runs. Jet diameters 
were scaled off sharp photographs made from a distance with a 
35-mm camera and extension tubes. The straight downward run 
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0 0.10 0.20 
D i m e n s i o n l e s s Ax ia l P o s i t i o n , x 

Fig. 8 Influence cf gravity upon the center-line velocity of jets with 
negligible surface tension 

of tubing was more than long enough to assure a fully developed 
exit velocity profile. 

The results of the experiment were graphs of dimensionless 
jet radius against x. The error in measuring from enlargements 
of the photographs was about ± 1 / 2 percent. Tube dimensions 
were measured within ± 1 / 4 percent. Physical properties and 
Ue (which were used in computing Re, Fr, and We) were known 
within about 2 percent. The experiment was as simple as possible 
and generally free of error. 

Fig. 10 shows a typical result. It includes the data photo-
graph to scale in the z-coordinate, the measured profile in di-
mensionless coordinates, the numerical solution of equation (20), 
and the unidimensional approximation. The numerical solution 
agrees with the observed profile within the error of the experi-
ment. The agreement is, in fact, so close that it is difficult to 
distinguish between the curves. 

In this case, the isopropanol wetted the lip of the tube and 
there was no influence of contact angle of jet other than a great 
increase in A for x < 0.001. Fig. 11 shows one of the data photo-
graphs of Brun for water leaving a capillary tube. In this case 
the lip was not wetted. The resulting contact angle was such as 
to cause an immediate and severe contraction of the jet that can-
not be predicted by equation (20). However, as x 0.20 (not 
shown in Fig. 11), both the data and the numerical solution con-
verge on the same final A as obtained by Middleman and Gavis. 

Numerical solutions for both Figs. 10 and 11 were also run 
without the surface tension term (i.e., for (1/We) = 0). The re-
sults showed little difference in the relaxation of the jet, but they 
converged to terminal values of A that were a little higher. 
Since Middleman and Gavis have adequately documented these 
terminal values, we shall not pursue surface tension effects 
further in this study. 

Conclusions 
1 An approximation to the transverse velocity component in 

the boundary-layer equations has been developed. It reduces 

Fig. 9 Apparatus 

P H O T O G R A P H OF J E T 

•WALL OF T U B E 

Re 605 
Fr 21.9 

= 27.8 
We = 37.8 

o 0.7 — 

0.6 

J E T R A D I U S % ) 
N U M E R I C A L S O L U -
T ION OF E Q N . ( 2 0 ) 
ONE D I M E N S I O N A L 
T H E O R Y , E Q N . (21) 

t 

0 . 7 

— 0 . 6 

f 
0 . 0 1 0 2 . 0 3 . 0 4 

D i m e n s i o n l e s s A x i a l P o s i t i o n , x 

Fig. 10 Comparison of observed and predicted jet radii with gravity and 
surface tension 
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P H O T O G R A P H O F J E T 

1.00 

' 0 . 9 5 

' 0 . 9 0 — 

0 . 8 5 

0.00 0.01 
D i m e n s i o n l e s s Ax ia l P o s i t i o n , x 

0 .02 

Fig. 11 Failure of numerical solution in a jet that is influenced by contact 
angle 

the equat ions t o a single numer ica l ly t ractable equat ion , b u t it 
applies o n l y in symmetr i ca l f lows. 

2 T h e a p p r o x i m a t i o n is fa ir ly g o o d , and it can b e m a d e ex -
t remely g o o d b y add ing integral cond i t i ons to sat is fy conserva -
t ion of mass and m o m e n t u m . 

3 T h e flow in exit ing Poiseuil le flows with an axial g rav i ty 

force and with surface tension around the j e t is descr ibed wi th 
great a c curacy . 

4 Liquid-so l id c o n t a c t angle a t the discharge p lane can c o m -
plete ly inval idate the analyt ical so lut ion if it o c curs a t l o w W e . 

Acknowledgments 
Profs . H a r r y L . E v a n s and R o g e r E i c h h o r n b o t h p r o v i d e d 

he lp ful crit ic ism of the manuscr ipt . M u c h of this w o r k was s u p -
por ted under N a t i o n a l Sc ience F o u n d a t i o n G r a n t N o GIC-577. 

References 
1 Brun, R. F., and Lienhard, J. H., "The Behavior of Free Laminar 

Jets Leaving Poiseuille Tubes," A S M E Paper No. 68—FE-44. 
2 Schliehting, H., Boundary Layer Theory, 4th ed., McGraw-Hill, 

New York, 1960, p. 97. 
3 Bohr, N., "Determination of the Surface-Tension of Water by 

Method of Jet Vibration," Philosophical Transactions oj the Royal 
Society, London, Series A, Vol. 209, 1909, p. 281. 

4 Schetz, J. A., "On the Approximate Solution of Viscous-Flow 
Problems," Journal of Applied Mechanics, Vol. 30, No. 2, TRANS. 
ASME, Series E, Vol. 85, June 1963, pp. 263-268. 

5 Goldstein, S., "Concerning Some Solutions of the Boundary 
Layer Equations in Hydrodynamics," Proceedings, Cambridge Philo-
sophical Society, Vol. 26, Part 1, 1930, p. 1. 

6 Goldstein, S., "On the Two-Dimensional Steady Flow of a 
Viscous Fluid Behind a Solid Body," Proceedings of the Royal Society, 
London, Series A, Vol. 142, 1933, p. 545. 

7 Tollmein, W. , "Grenzschichten," Handbuch der Physik, Vol. 4, 
Part 1, 1931, p. 267. 

8 Duda, J. L., and Vrentas, J. S., "Fluid Mechanics of Laminar 
Jets," Chemical Engineering Science, Vol. 22, 1967, p. 855. 

9 Middleman, S., and Gavis, J., "Expansion and Contraction of 
Capillary Jets of Newtonian Fluids," Physics of Fluids, Vol. 4, No. 3, 
1961, p. 355. (See also Erratum on p. 1450, same volume.) 

268 / j u n e 19 6 8 Transactions of the A S M E 

Downloaded From: https://fluidsengineering.asmedigitalcollection.asme.org on 07/13/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




