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On Real Fluid Flow Over Yawed
Circular Cylinders

The equations for both the boundary layer and the outer potential flow over a yawed
cylinder can be resolved into equations for the crosswise and spanwise velocily com-
These components of the boundary laver are evaluated using Sears’ method,
and the separation point is found to be uninfluenced by the yaw angle.

The potential-

flow solutions for the spanwise and crosswise flows are added together to determine vor-

tex palterns behind the cylinder.

The approximate direct dependence of the Strouhal

number upon the cosine of the yaw angle and/or the drag coefficient upon the square of

the cosine, are verified.

Experimental determinations of the Strouhal number and

visualization of the flow pattern are consistent with the analysis.

Introduction

Tms study developed out of a research project aimed
at understanding the wind excitation of power transmission
lines. Our more restrictive purpose here will be that of describing
the boundary layer, and (in relation with it) certain aspects of
the vortex shedding from infinite, smooth, stationary, yawed,
circular cylinders. Problems related to cylinder motion and the
effects of outer strands of wound cables have also been studied but
they will not be considered here.
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Mechanical Engineering,

The description of the inviscid flow in the cylinder wake is ac-
complished by adding a spanwise component of flow to the von
Karman vortex street which appears as the crosswise component.
To do this we must first learn whether or not the crosswise
boundary-layer component is the same as in unyawed flow. This
is particularly important with regard to separation since the
vortex shedding frequency is related to the wake width and the
base pressure, as Grove, et al. [1]* and Roshko [2] have ob-
served. A portion of this study is accordingly given to decom-
posing the boundary-layer equations into equations for the span-
wise and crosswise flows and then solving these equations.

Two effects of the vortex shedding that have been proposed
without proof in the past are: (a) That the vortex frequency
decreases as the cosine of the yaw angle, 3; and (b) that the drag
force decreases as cos? 8. Relf and Powell [3] obtained the latter
result experimentally for the range 10¢ < Re. < 105, where®
Re, = 2ULR/v.

4 Numbers in brackets designate References at end of paper.
i Symbols not explained in context are defined in the Nomenclu-
ture.

Nomenclature
a spacing of vortices in upper Re.. =. Reynolds number, 2U.R /v 2z = coordinate normal to cylin-
or lower row, or an un- St Strouhal number, 2f,B/U .. der surface
specified positive integer U(xz) = crosswise component of free- a = angle between direction of
b spacing between upper and stream velocity at surface flow and crosswise plane
lower vortex rows of eylinder B = yaw angle, see Figs. 2 and 8
Cp drag coefficient, total drag U velocity of nndisturb.ed flow I = circulatio.n of V:OI‘tiCES in
force divided by pU.*/2 U component  of .undlls,trurl:')ed spanwise direction
Chp Coy pressure drag and friction ﬂ0¥.v in crosswise direction Z = velocity component normal
drag coefficients based U’ veloglty of vortex strget to g — y plane
S da _ with respect to undis- { = coordinate normal to £ — ¥
upon pressure drag and A .
skin-friction forces tl.lrbec-i flow in crosswise pla_ne
F = u/U, , iy S 7 = (VRe/R)
f, Blasius functions, defined by i TS CO\ .p.onen. R 6 = /R, see Fig. 2
e : cylinder surface in cross- — o ity
tifhhon (8] wise direction £ = ) L
fo = vortex shedding frequency 14 component of undisturbed : = kmerrllatlc ViSeosity, A-_L/.p
G v/V flow in spanwise direction = = velo.cmy. component in £-
g, = ftunctional coefficients for v velocity component in span- d”‘?"tlon .
spanwise velocity, defined wise direction £ = coordlnajte normal to cyllhn-
by equation (11) w = velocity component normal der, in plane of undis-
H = w\V/ Re/U, to cylinder surface tu.rbed ﬁow.
. e x coordinate along cylinder p = density of fluid
: i R P T T surface in crosswise direc- 1 = general subscript indicating
e DISSPRED tion that U.. has been replaced
pt p/pU y coordinate parallel with cyl- with U,; not applicable
R = radius of cylinder inder surface to g, and f, forn = 1

Discussion on this paper will be

accepted at ASME Headquarters until December 18, 1967
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Fig. 1 Strouhal-Reynolds number relationship for unyawed circular cylinders as defined

by existing data

Hanson (4] recently measured the effect of yaw angle upon the
vortex frequency, f,, behind a slender music wire in the range 40
< Re., < 150. He found that, for 8 < 68 deg, the relationship
between the Strouhal and Reynolds numbers for unyawed cylin-
ders (see Fig. 1)® represented his data when the U, in both St
and Re. was replaced with U/, cos 8. The representation was
ragged at Re,, less than about 100 and good at the higher Re..”
Hanson also found that Re, at the inception of unstable shedding
did not increase quite as rapidly as cos™! .

Prior investigations of the laminar boundary layer on vawed
cylinders have been made by Wild [6] who used an integral
method to solve the sweptback wing problem; by Cooke [7]
who used an exact solution for the wedge flows; and by Sears [8]
and Gortler [9]. Sears established, and Gortler extended, a
general method for dealing with flows whose crosswise component
of free-stream veloeity is a polynomial in crosswise position.
Schlichting [10] provides an excellent summary of these works.

These boundary-layer treatments predict that =eparation oc-
curs at positions somewhat bevond where they are actually ob-
served. This is because the descriptions become imaccurate in
the neighborhood of the separation point. Nevertheless the
qualitative behavior of such solutions is sound. Accordingly, we
shall use Sears’ method to determine how separation occurs on a
yawed cylinder.

Calculation of the Boundary Layer

Fig. 2 shows the yawed, circular, cylinder configuration that
we wish to describe.  Under the following changes of variable:

U.F(6, 1) 0 ==z/R

I

U

(VRe//R)z

<
I

VG(8, 1) N

(1)
w = (Uy/VRe)H(b, 1) p*=p/pUs
Rel = 2U1R/V

the crosswise and spanwise boundary-layer equations and the
equation of continuity become

FF0+HF,7= —pg++2F>7,7 (2)
FGy + HG, = 2G,, (3)
Fo+ H, =0 (4)

6 Fig. 1is a “best estimate’” which was made in reference [5] on the
basis of the data of many previous investigators.

7 At 72 deg—the highest yaw angle—St was just twice what it
should have been were it consistent with this representation. We
wonder if this might not have been some effect related to vibration
of the nonrigid wire.

2

Fig. 2 Coordinate system

with boundary conditions
F=G=H=0 at
F=0G=1 szt

(5a)

(5b)

7=20
7]=CO

The crosswise component of the free-stream velocity is in this
case

sin(rr/2)

U(z) = 2U, sin § = 2U, Z :

n=1

o (6)

so that —pg*, which can be written as RUU,/U,?% becomes

. <n1r> : ('nnr)
- sin{ —- ) sin| —
S VT s € 5 TV

! !
il n! m!

Equations (2)-(5) with (7) comprise the system that we wish to
solve for F, G, and H. In keeping with the method of Sears, we
shall employ a stream function in the form of a Blasjus’ series

P prea mr)
SIY S
W L 4" "\ 2

= == 5 ———— 0, (n) | — Ofi(n)
\/l{el n=1 {2 /
(8)
The crosswise and normal velocity components are then
. (T
(n 4 1) sin (—2-> o

ewfn, 29fn,

o

n=1

P

n!
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while the spanwise velocity is expressed in terms of a different
set of undetermined coefficients, as

¢ = 3 A tgusln) (11)

n=1

The substitution of equations (9) and (10) into equations (2)
and (4) vields equations in the Blasius’ functions, f,. The evalua-
tion of the f, is well known and, in fact, has been done in a very
general way by Tifford [11]. We have repeated this computa-
tion for fi, fo, ..., and fu and obtained values that differ slightly
from Tifford’s. Since the calculation of f, ix not difficult on a dig-
ital computer ouce 7,,"(0) is known, we shall only present a compar-
ison of f,”(0) v values with those computed from Tifford’s func-
tions, in Table 1. The resultant crosswise and normal velocity
components are plotted in Figs. 3 and 4 for a somewhat larger
range of vartables thau has been presented in the past.

It is of importance Lo note that the separation of the erosswise
flow oceurs when 8 = 1.899 rad or 108.8 deg regardless of the yaw
angle. However, if the spanwise flow should separate before 6
reaches this value, then we can no longer expect the inception of
vortex shedding to be independent of yaw angle. Sears and
Gortler present tables from which g, can be obtained for n =
1, 3, 5, and 7; but this will give insufficient accuracy for large
values of 8. Accordingly, we must. extend this caleulation before
locating the separation point.

u/ULx)

Fig. 3 Velocity profiles in crosswise direction

Spanwise Velocity Distribution

The substitution of equations (9)-(11) into equation (3) gives

% ' (n — 1)(m + 1) sin <n;1r>
Z Pl = Z e — X

n=1 n, m=1 m!

f7,.lgn—10m +n—2 — fI' Z (n — 1)0"“,{]"_1

n=1

. [mT
o m{m + 1) sin <-;)—)
Z e

— L fonlint 1GmAn—1
n, m=1 .

+ N1 Z 0"“gn_1' (12)

n=1
Equating the like coefficients of 6 we get
Gor” + f1'acr — figan’
mt+n=a+1 (m + 1) sin (%r)
- 2 - " [(n = 1)fn'Gat — Mfpgnr’]

nm=1 m!

(13)

where a is a positive integer. The boundary conditious ou this
family of second-order linear differential equations are:

9,0y =0, n=12 .. .; go @) 1
(5a)
gl@) = 0,n2>1

Equation (13) becomes go” + figo” = 0 fora = 1. Its solution
subject to the boundary conditions go(0) = 0 and gol @) = 1 is

Table 1 Comparison of initial values of f,” (0) com-
puted by Tifford with those obtained in the present

study

value of f;;(o) computed:
e,
- by CiiZord in present study
£1(0) 1.2306 | 1.2326407
fg(oi 0.7244 | 0.7245672
f'5'(o> 1.0320 1.0326583%
£5(0) 2.0368 2.0422885

i

:’g(o) 0.2801 | 0.3136514
£1,(0) 67.6375 67.4999114 ‘

R\ *60° 7
.
: pl

40"
8-

Fig. 4 Distribution of normal velocity component
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Table 2 Functional coefficients for spanwise velocity, g,
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Y 0.00368 0.
Table 3 Derivatives of functional coefficients for spanwise velocity, g,
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f exp —ffl 7)dn | dn
0 0

For @ = 2, equation (13) becomes ¢.” + fig:" — fi’gr = 0. This
equation and the boundary conditions, ¢:(0) = g(») = 0,
admits the trivial solution, gi(n) = 0.

The sin (mm/2) elements in the right-hand side of equation (13)
eliminate g, from the equation for even or odd values of (n — 1)
when a is even or odd, respectively. Then, since g = 0, equa-
tion (13) with @ = 4 becomes an equation in g; only, whose solu-
tionisgs = 0. We can then see by induction that all other g with
odd subscripts must also vanish.

The ¢ with even subscripts have been obtained from succes-
sive numerical solutions of equation (13) for ¢ = 1,3, ..., 11
beginning with the evaluation of go using equation (14). Tables
2 and 3 present these values of ¢, and ¢,’. Fig. 5 displays the
resulting spanwise velocity profiles computed with the aid of
equation (11). These profiles show that the spanwise flow
separates—that v, vanishes on the wall—when 0 exceeds 108.8
deg. The actual location of spanwise separation cannot be de-
termined without computing a very large number of g,. How-
ever, Fig. 6 illustrates that convergence is reasonably complete
in terms up to g, as long as § < 108.8 deg.

(14)

4

08 -

0.6 [~

G=v/V
o
»

0.2

Fig. 5 Velocity profiles in spanwise direction

Spanwise separation is thus independent of 8 and would occur
after the boundary has separated in the crosswise direction.

Effect of Yaw Angle Upon Vortex Frequency

Since the separation point has been proven independent of the
yaw angle we can assume that the crosswise component of the
vortex street is uninfluenced by spanwise flow. Neither the

Transactions of the ASME



meos]

RELIABLE CONVERG-
ENCE IN COEFFICIENTS
UP 70 g0

} 0.10 L j08.8° = l
" :
© x [ { 1200 |
0.05 L | |
‘DouBIOUS .
‘ CONVERGENCE ‘ 120 [
o |- N 9, TO 950
-0.05 l ol e i) | _
~ . ° o °
o NU' '0 .U‘ ’C}'l QU\
= o © © ® ®
+° + + + +
| ] 1
= 1] 1 1 :
+ + + +
o o o o

Fig. 6 Successive approximations to spanwise velocity distribution at
various values of f and at n = 0.4

RANGE OF
VELOCITIES IN

YELOCITY OF VORTEX THE [ =0 PLANE

.

NOTE:

VORTEX STREET 5
IS NOT ORAWN TO/
SCALE. -

Fig. 7 Configuration of wake behind yawed cylinder

geometry of the street nor the circulation, I", of the vortices in
the crosswise plane will change, Fig. 7. Vortices will thus be
shed at a frequency corresponding with a velocity of U, cos 8
over an unyawed cylinder. The correlation equation used by
Haunson, namely,

2Lk
Uy cos 8

is thus vindicated. A Taylor series expansion of the right-hand
side about Re, gives

2f R
—— S w) — B
Us cos 8 Whiea) == B (

= SU(2R(U cos B)/v) = St(Rer) (15)

st

dRe)new (1 — cos B) (16)

Inspection of Fig. 1 reveals that the second term on the right
can be neglected above Hanson’s range of interest and below the
boundary-layer transition, especially when B is not very large.
Thus, for a large range of practical interest,

fu = (fv unyawed n_\'linder) cos B (17)
or
St = (Stunyuwed eylinder) c0s B (17a)

Grove, et al., have shown that below Re, >~ 300 the thickness of
the wake, which was constant at higher Rey, is now a function of
Re,. This is the reason that Re., begins to exert an influence on
f, as it decreases.

Journal of Basic Engineering
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Fig. 8 Dependence of dimensionless vortex frequency upon yaw angle

It is not surprising that even equation (15) failed to correlate
Hanson’s results cleanly at very low Re; since the regime of vis-
cous flow ceases to take the form of a real boundary layer. The
preceding proof of the independence of the separation point on
yaw angle thus ceases to be meaningful.

A set of experiments by Chiu [12] in the range 3,900 < Re,
< 21,200 verifies equation (17a) between 8 = 0 deg and 60 deg.
These data, which were obtained with the help of a thermistor
anemometer [12] in the wake of cylinders mounted in a water
flume, are reproduced in Fig. 8. The reference value of St for the
unyawed flow is only about 0.192. This is a little under the value
of about 0.204 given by Fig. 1. The difference probably arises
from minor sidewall effects in the flume [13].

Fig. 8 also displays data for an unyawed elliptical cylinder
whose cross section corresponds with the lowwise cross section of
a 60 deg circular cylinder. The Strouhal number based upon the
minor diameter is a little above that for an unyawed circular
cylinder, and much greater than St cos 8 for a cylinder of radius
R yawed at 60 deg. This adds weight to our case by showing
that flow over a yawed cylinder is not equivalent to flow over an
unyawed cylinder that has the same elliptical cross section par-
allel to the flow.

Effect of Yaw Angle Upon Drag Coefficient

The drag coefficient, C'p, is the sum of a pressure drag com-
ponent, Cp, and a frictional drag component, Cp,. For an
unyawed cylinder, the pressure drag component constitutes more
than half of the drag as long as vortices exist in the wake (Reo
S 5). As Re, is increased from 300 to 104, friction drag de-
creases from about one quarter to a negligible fraction of pressure
drag (see, e.g., [3]).

The pressure drag coefficient computed by the classical von
Karman theory [14] is

b v AN
CD,, = 3 |:2.83 (b_m) — 1.12 ( Um) ] (18)

for an unyawed cylinder in a flow for which Re, > 300. The
symbols b and U’ designate the vertical spacing between vortex
rows and the velocity of the vortex street with respect to the un-
disturbed fluid, respectively.

For a yawed cylinder, we wish to base the drag coefficient,
[Cp,ly, upon the force in the crosswise direction and upon the
flowwise velocity, U.. Since both U’ and U, in equation (18)
must be multiplied by cos 8 as the cylinder is yawed, there will
be no net effect upon (U’/U,). The only change will result
from the Ux? in the drag coefficient. Thus

[OD7J]l = CDp cos® f3 (19)

The smaller friction drag component can be expressed as



1 -1 separation
Cp; = (; pU,J) { w( o /0z)s il

=0
or

GCpy = Ree, ™ /*[function of £,”(0)] (20)

for an unyawed cylinder. For a yawed cylinder, the U, in Cp;
and Re,, must be multiplied by cos 8. Thus

[Cpjly = Cpy cos B (21)

which represents a slightly weaker influence of the yaw angle.
We must thus write

[Cply =~ Cp cos® B; Re, > 300 (22)

as long as Re; and B do not simultaneously become very small
and very large, vespectively. When 8 = 60 deg and Re; = 300,
for example, equation (22) will give a result that is about 21
percent high, but at 8 = 60 deg and Re, = 1000, the error is
only about 5 percent.

Effect of Yaw Angle Upon Wake Behavior

The velocity components in a two-dimensional von Karman
vortex street are well known [14]. If we add the spanwise com-
ponent to these components, we get a complete description of
the potential flow in the wake

Coom(20 — b)
gl ——
T
= Uy o r
cosh T—ug‘ L — cos Zﬁ
a a
sinh LZ{ + )
a
- (23)
p 2
coshr(zf +b) i 23
a a
sin&r<£ - _‘E)
7 - _ﬂ'F a z N
=% 2
- cosh?r( g bt -+ cos _2_1r_£
a a
. 2rE
sin ——
a
—_— e 24
W (20 — b) 2w & ()
cosh — — — ¢cos —
a a
v="V=Utan 8 (25)

where the velocity components, = and Z, are in the £ and { di-
rection, respectively, Fig. 7. It is instructive to consider the
angle, & = tan™! (V/E), that the flow makes with the cross-
wise plane.

On the diametral plane in the lowwise direction (L.e., { = 0)

U, tan @
. 4440
1 — (1/2) cos? (2mE/a)

a = tan~! (26)

U,

or if we note [14] that 2.22I'/a = U’:

— tan—! { tan B [1 A :”
a = tan an T 1 — (1/2) cos® (21¢/a)

Thus, at points halfway between the upper and lower vortices,
where £ = (2n + 1)a/4, we obtain @ = tan~![tan B8/(1 —
2U’/U)]. However, fa/Uy = 1 — U'/U; and @ = b/0.281.
Accordingly, if we approximate® 2R with b, then

$ Roshko [2] presents some data that indicate 1.10 < b/2R < 1.25,
depending upon Re..

U'JU, ~ 1 — 3.56 St(cos B)~!

and

2n + La

a ~ tan~! [sin B/(7.12 8t — cos B)], & = ¢ 3

(26a)
Directly above and below the vortices, on the diametral plane, we
likewise get

a >~ tan~! [sin B/(14.24 St — 3 cos B)], £ = na/2 (26b)

Equations (26a) and (26b) give for the 8 = 35 deg case shown in
Fig. 7, a ~ 44 deg and 56 deg, respectively, when St = 0.20.
The resulting range of velocities in the diametral plane is sketched
in Fig. 7.

The motion of the vortex centers in the upper row can be ob-
tained by setting £ = ne and { = 6/2 [14]. Then the first term
in equation (23) vanishes and

U, tan 8 |: tan B3
a = tan—! - | = tan—1 | - -
"N o m| " L ]?
: a a
(27)

Again, we can write @ ~ tan™! [siu £/3.56 St] =0 that for St =
0.2 and 8 = 35 deg, @ ~ 38.8 deg. The vortex centers in the
lower row will also have this same dowustream direction, as a
result of symmetry.

In the £ — y plane at { > b/2 (a plane above the vortex cen-
ters), we must consider the bracketed term in equation (23). If

L=

{a) B = 20 deg flow passing near cylinder surface

(b) B8 = 20 deg flow passing about 1 in. above cylinder

{d) B = 60 deg flow passing about 1 in. above cylinder

Fig. 9 Dye markings in wakes of a 1.5-in-dia yawed cylinder; Re,, =
11,000; flow from right to left; side view on left, top view on right
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this term <0 then a will exceed 8 and the flow will deviate to-
ward the rear or downstream end of the cylinder. After rear-
rangement this inequality becomes

o€ S~ rh Lt P
o= < | sinh — sinh —
a a a

2k

a
substantially <1-—that is, for fluid flowing through the region
generally above the lower vortex tubes. Conversely, as the flow
approaches the region directly above the upper vortex tubes, it
will (at some point) have to deflect toward the front or up-
stream end of the eylinder.

Thus the vortex centers move in a straight line at an angle
(a — (3) with the free stream in the downstream, or rear, direc-
tion. When a fluid particle moves over the surface of the cylinder
and separates, it first deviates to the front; then it deviates to
the rear as the sheet upon which it rides rolls inside the vortex
street. A particle thus moves in a corkscrew motion about the
path of a vortex center. The fluid particles outside the vortex
street meanwhile move in paths that oscillate in a nearly hori-
zontal plane. Two sets of dye trails, for each of two yawed
cylinders, illustrate this behavior in I'ig. 9.

(28)

Condition (28) is satisfied for values of cos that might be

Conclusions

I The spanwise separation point ix independent of 8, and it
would occeur bevond the erosswise separation point.

2 The Strouhal number and pressure drag coefficient can be
evaluated for the crosswise component of flow, as though the
spanwise flow did not exist. (The same would be true for the lift
coefficient. )

3 Conclusions 1 and 2 become inaccurate near the low end
of the vortex shedding regime (Re., < 100) owing to the deterio-
ration of the boundary layer at such low Rea.

4 [Oply is somewhat greater than (' cos? B as long as the skin
friction i important since the influence of 8 upon Cp; is less than
its influence upon Cp,.

5  Particles in the cvlinder wake describe counterrotating
corkscrew paths within the upper and lower rows of the vortex
street.
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