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Introduction

THE BREAKUP of liquid jets has been under fairly
continuous scrutiny since Rayleigh [1]! first explained the mechan-
ism of capillary instability in 1878. These inquiries received con-
siderable impetus forty years ago from attempts to improve diesel
injection systems (see, e.g., [2]), and during the 1950’s, by work
with rocket injection systems (see, e.g., [3] and [4]). Summaries
of work done on breakup as a result of capillary and aerodynamic
instability are given by Huang [5] and by Grant and Middleman
{6].

More recently, interest has turned toward another kind of jet
breakup: the explosive flashing that results from the thermo-
mechanieal instability of a jet of highly superheated liquid.
Brown and York {7] and Lienhard [8] described the spray form-
ing capabilities of such jets, and Lienhard and Stephenson [9]
gave a restrictive correlation of breakup lengths as a function of
superheat. Flashing resultsin a very fine spray that is potentially
useful in a wide variety of aerosol forming processes.

The aim of the present study is that of showing how to predict
the breakup length of a given superheated jet, and its variability,
under fairly general circumstances. This will require that we
determine whether or not capillary or aerodynamic instability
will give rise to hreakup before superheat does, in any situation.
Therefore, we shall begin by considering what has been done
toward predicting the breakup of a “cold’ jet.

Jet Breakup in the Absence of Superheat

In 1909, Niels Bohr [10] extended Rayleigh’s analysis to include
viscous effects, in a prize winning paper on the evaluation of sur-
face tension, and Weber [11] went on to obtain the breakup
length, L,, for a viscous jet in 1931. His expression was

L, D 34/ We
D/We In 2 (1 —i—%R’e ) (1)

where D is the diameter of the jet, and We and Re are the Weber
and Reynolds numbers. The symbol, 8, denotes the initial dis-
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water and liquid nitrogen, and subcooled water. Dimensionless, semiempirical ex-
pressions are developed for both flashing, and aerodynamic and/or capillary, breakup,
and verified with data. The distribution function for breakup length is predicted for
the superheated case with the help of Boltzmann statistics.

turbance in the jet. For most cases of practical importance Re
> v/We and equation (1) reduces to

— =~ In 2 (la)

The term In (D/26) depends upon the initial disturbances, and
these in turn are unknown. However, for most cases of jet efflux
this term proves to be about 12 &= 1. This corresponds with a
variability of a factor of e*! in the initial disturbance.

When the velocity of efflux is high, aerodynamic forces override
capillary foreces and the breakup length begins to decrease with
increasing velocity. The jet now breaks up by the growth of
sinuous antisymmetric waves instead of the symmetric varicose
waves that distinguish capillary breakup. Miesse [12] found
that he could correlate data for many fluids in diesel injector
nozzles operating in this range, using

RS W (2)
D+/We

This expression is restrictive in a variety of ways. It applies to
jets in which there is considerable turbulence, and experience
shows (see, e.g., [6]) that L, decreases less rapidly with Re as
turbulence increases. It can even begin to rise again with Re,
at very large Re, when the jet is turbulent. Equation (2) also
applies only for velocities above the transition point from capillary
to aerodynamic breakup. Finally, it is limited to a single sur-
rounding air density. Dumbrowski and Hooper [13] have shown
that decreasing the air pressure around a water bell? stabilizes it,
and vice versa.

If we consider that L, depends upon the velocity, V, the liquid
viscosity, u, the densities of the liquid and of the surrounding air,
p; and p,, the surface tension, o, and D; then the Buckingham
pi-theorem shows that four dimensionless groups are needed to
characterize the process. Thus the general form of equation (2)
would be

%b_ = F(We, Re, p./p;) @)

In the present study, we shall assume that L, is always ap-
proximately proportional to v/ We, as both equations (1a) and (2)

2 A “‘water bell’”” is the spreading liquid sheet leaving the point.of
collision of two opposing coaxial jets. Its aerodynamic behz.wmr
was shown by Huang [5] to be strongly analogous to that of a jet.
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ndicate it to be, and we shall work with only one value of p,/p;.
This will be p,/p; =~ 0.0012, which corresponds with any liquid
whose specific gravity is close to unity, discharging into a stan-
dard atmosphere. We shall therefore attempt to correlate data
for sharp-edged orifices using
L, ]

— = F

D/we I'(Re) (4)
over the entire range of efflux conditions.

Once data have been obtained to form this correlation, ounly a
part of the breakup problem will have been completed. This
breakup length will only apply if the jet does not first break up as
a result of flashing. Our second objective will then be to predict
the flashing breakup length and its variability.

Jet Breakup Under the Influence of Superheat

The Delay Time. We shall now redevelop some ideas from refer-
ence [9] in such a way as to provide necessary background and
facilitate the subsequent development. The delay time, {4, be-
tween the efflux of a jet and its breakup, will be used here instead
of the breakup length because most of the prior work has been
done in terms of time. The change is unimportant since {, =
L,/V. The delay time is composed of two components: an idle
time, g1, during which an unstable bubble nucleus in the fluid
“dwells’” before it begins rapid growth, and a time, ta, for rapid
growth of the bubble up to the size at which it will fracture the
jet.

The calculation of both these components of the delay time
will make use of Dergarabedian’s [14] bubble growth equation:

3 r—1
o4 % 72 — —— -+ F(physical properties, time) = 0 (5)
-

where r is a dimensionless form of the bubble radius, &,

The function, #, was ignored in Dergarabedian’s original formu-
lation, but added later by Forster and Zuber [15] and Plesset
and Zwick [16] to account for the role of heat conduction in caus-
ing the bubble to grow.

These latter studies showed that after the bubble grows an
order of magnitude beyond its unstable equilibrium radius, the
inertia terms, 7 + (3/2)7? cease to be important. The asymp-
totic solution of the remaining equation applies through almost the
entire growth of the bubble. This solution was given in [15] in
terms of the specific heat, ¢, the latent heat, A, the superheat,
AT, the saturated liquid and vapor densities, p, and p,, and the
thermal diffusivity, «, as

A71 .
R = (ﬁwj) <‘Lf) ral )
h,fﬂ pﬂ

Photographic evidence indicates that a jet shatters when a bubble
grows to about & = D. Therefore, we can approximate s as

D by, \t (0, \?
ll'.’. o - 9
o i) (7 .

The longer component of {4 is usually {q—the idle or dwell
time.? To characterize this, let us consider the solution of equa-
tion (3) for small ». References [15] and [16] show that the fune-
tion, I, can he neglected in this range, and reference [14] shows
that equation (5), with the initial conditions, »(0) = 1 + € and
#0) = 0, admits the solution

’ 1 2 1\
T = f (* + = - -> dr (10)
14e 3r# 3 r

This vesult is plotted in Fig. 1 for an initial perturbation, €,
equal to 0.01. Here we see that, depending upon the magnitude
of ¢ the bubble might grow very slowly indeed for a long time,
before it picks up speed.

Reference [9] provided the basis upon which we wish to build
a correlation-for {y. There it was argued that the discharging
liquid might contain “weak spots” that could be triggered into

3 This is especially true in water. For this reason, (s was simply
neglected in reference [9].

= R/Ro (6)
and the independent time variable, 7, is
. 371/ e
=1 [(pv pnmb) jl (7)
4p,0*
Nomenclature
A = cross sectional area of jet, A = wD*/4

= gpecific heat at constant pressure
= diameter of jet—fully contracted
= any unspecified function

Fo = Fourier number, Fo = ai/D?

52

Rt

flx) = distribution function of
AG = potential barrier to bubble nucleation, AG = 4mwal?
g; = ‘‘degeneracy’ of a random event
h;, = latent heat of vaporization
Jo, J1 = Bessel functions of the first kind of order zero and one

L, = breakup length of a jet, L, = Vi,
M, = the roots of Jy

m = unspecified exponent, equation (27)

N = total number of breakup events

N, = number of breakup events between ¢;_y and ¢;

Pr = Prandtl number, Pr= u/p,a

Pamp = ambient pressure
p, = vapor pressure at 7' = T
Ap = p, — pamp, the extent of superheat expressed in terms of
pressure

R = bubble radius
Re = p,VD/u

Ry, = equilibrium bubble nucleus radius, 2, = 2¢/Ap
r = R/Ry
ri = perturbation radius, n=r — 1
T = temperature
T.1. = temperature on the axis of a jet
Ty = temperature of superheated jet at efflux

AT = the superheat, AT =1y — Tt

916 / sePTEMBER 1970

{ = time, or any random variable in the context of equation
(24)
{. = characteristic dwell time of a single bubble, {, < {u
td = delay time, Ld =t{n + Lo
ta = dwell time required for a bubble to commence rapid

growth after jet efflux
lgz = time required for a bubble which has begun rapid
growth to shatter the jet

la = average dwell time
{; = a particular value of the random variable, ¢
L = the root mean Bth moment of the distribution of events

in ¢, defined by equation (26).
We = Weber number, We = p,V2D/¢

y = radial coordinate, ¥ = 0 on jet centerline
a = thermal diffusivity
B = number specifying & moment of a distribution. See
equation (26)
6 = initial disturbance in a jet interface
€ = initial displacement of » from unity
u = liquid viscosity
p. = density of air surrounding jet
p; = density of saturated liquid, p, >~ density of jet at any
temperature

= density of saturated vapor

= surface tension between a saturated liquid and its vapor
= dimensionless time. See equation (7)

= rforl{ =1,

= dimensionless dwell time. See equation (16)

= dimensionless siperheat. See equation (17)

€ B 2ol
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Fig. 1 Early growth of a vapor bubble when r(r = 0) = 1.01

unstable nuclei by whatever “noise’” might exist in the environ-
ment. The most effective source of noise is, in turn, that gener-
ated by other flashing bubbles. The energy required to trigger
a nucleus in the liquid is Frenkel’s [17] “potential barrier’’ to
nucleation, AG. The potential barrier is the free energy of a
bubble with respect to the surrounding liquid, and Frenkel found

AG = %WURoz (]J)

where Ry is the radius of an unstable equilibrium nucleus. It is
given by the force balance on a bubble as

20
Ry = — (12)
Pv — Pamb

where p, is the vapor pressure corresponding with the tempera-
ture of the superheated liquid, and pamy is the ambient pressure.

But, once a nucleus is formed, it must survive existing back-
ground noise for a characteristic time, ¢, before it has sufficient
size for its growth to “run away.” From equation (7),

4 2 /2
{, = 7€) [—Pfg J (13)
(pv - pamb)

Fig. 1 indicates that for an initial disturbance, ¢ = 0.01, 7, would
he about 2 or 3.

Without reproducing the formulation of the probability argu-
ment in reference [9], we can indicate how it went: The probabil-
ity that there is a nucleus that will survive until rapid growth
begins is proportional to jet area, 4, inverse AG, and inverse ¢,
The delay time in. turn should be inversely proportional to the
probability of survival. Thus we can write for the average, t4,
of La:

Tat ~ AGL/ A (14)

or, after substitution of equations (11), (12), and (13),
l; ~ 1/[’1(7&; - p&xlxll))7/2 (15)

This dimensional result was verified with data obtained in
flashing water jets. The data exhibited wide variability and
emphasized that equation (15) gives the average of what is, in
actuality, a broad distribution of ts. We shall therefore show:
first, how to generalize equation (15) into an expression that will
work for liquids other than water; and second, how to predict the
distribution of {s about this average.

Dwell Time Correlation. The preceding discussion shows that £
should depend upon p;, D, o, and (p, — Pamn). These comprise
five variables in three dimensions—time, length, and force. The
Buckingham Pi-Theorem shows that two dimensionless groups
are needed to fully characterize the phenomenon. We shall
choose these to give a dimensionless dwell time, &:
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Fig. 2 Variation of jet centerline temperature with Fourier number

P=—"—"1In (16)

and a dimensionless superheat, or dimensionless jet diameter,

y=DAp/o (17)
Using these expressions to eliminate (s and Ap from equation
m .
(15), and noting that 4 = 7 D2, we obtain
DY = const (18)

Onece the constant in equation (18) has been determined ex-
perimentally, the expression should predict the mean breakup
length for any superheated liquid.

One tacit assumption has been made throughout these con-
siderations, namely, that I, will be sufficiently short that cooling
of the jet will be unimportant. Actually, the interface of the jet
will assume the saturation temperature, T, corresponding with
Pamb a8 soon as it is formed. The validity of the assumption can
be checked by solving the heat conduction equation. If the
Péclet number, VD/2a, is high (10 or more) axial conduction
should be negligible and the problem becomes

L1or 120 <,U 32) (D)2, 1) = Toue

@0 YNy, 0) = 1y~ T
or
oy

I

(19)

y=10

where y is the radius of the jet and T, is the temperature of the
emerging superheated liquid. The solution (see, e.g., [18]) is

T — T ©  Jo(M,2y/D
b 2 Z of J’/ )
To — T M J (M)

n=1

exp (—4M .2 Fo) (20)

where the M,’s are roots of the Bessel funetion of the first kind of
zeroth order, Jy, and the Fourier number, Fo, is

Fo= al/D? (21)

Fig. 2 shows the relation between the centerline temperature,
T,1., and Fo, computed from equation (20). One point on this
curve is of great interest to us: Tquation (15) shows that Ap is
proportional to ¢ ~*/7 but the Clausius-Clapeyron equation shows
that, to a first approximation, Ap is proportional to T' — Tt
Therefore, if T — T decreases more rapidly than L= or
To—*/7 the delay time will be increasing faster than time is pass-
ing. This point is reached at Fo = 0.0205 (see Fig. 2).

Thus cooling will protect the jet from flashing if the following
criterion is met:

fa > 0.0205 D%/ (22)
Nondimensionalization of this criterion with the help of equations
(16) and (17) gives

PrRe

d > 0.0205 —
- ’ V'We

Al (23)
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Fig. 3 Schematic diagram of water loop

where Pr is Prandtl number, uo/p;.

Fquation (23) is a conservative criterion because considerable
cooling has occurred before it is reached. It has been shown by
Day [19] that the superheat energy has been reduced by about
32 percent, even though 7' — 7., has dropped only 9 percent, at
this point. However, since the breakup length is a random vari-
able, equation (23) gives a probable limit and not an absolute
limit. Thus cooling ‘“‘hedges’’ against any such random occur-
rences of flashing as might oceur in apparent violation of equation
(23).

The Variability of the Dwell Time. It was shown by Lienhard and
Meyer [20] that the generalized gamma distribution function,
which contains most of the common distribution funetions as
special cases, can be obtained by the methods of statistical
mechanics. The function is

~ L ﬁ 7n/6 ‘_‘é— m-—1
['rmﬁf(t) - [F(??l/ﬁ) (6 > ] (trmﬂ>
T oom L P
X exp [_ B (L,Tﬁ) :| (24)

where the constants are explainable in terms of the constraints
on the distribution. These are: (a) conservation of the events
or elements that are being distributed—the dwell times in this
case. If there are Ny of event i1, N of event £y, and N of event ¢,
then the total number of events, N, is given as

SN, =N (25)

(b) A Bth moment of the distribution is known. If § = 1, then
fent 1s & simple mean, ;. If 8 = 2, then ?,,2 is the root-mean-
square moment, tms, etc. Thus

> NS = ()N (26)
=1

(¢) The degeneracy, g;, or number of ways in which the event
can occur at the 7th level, is of the form

gi~ Tt @7

where m is a constant. Neither m nor 8 need be integral but both
must be positive.

Equation (24) is the basis upon which it is possible to predict
the variability of the dwell time, {5. The appropriate moment of
the distribution is the simple mean given by equation (18); thus
B = 1. The specification of m requires that we first consider the
very early growth of a bubble. We can find this by solving for a
small perturbation, »(7), around the equilibrium radius, » = 1.

518 / sepTEMBER 1970

Fér:;:ue T - _o—Safety Valve
Control  —
Valve -
]
1
] — Fillar
7: 1 :I'““’ Plug
1 ]

{ ! O~Ring

Support 1" Thermocouple
PROr Leads

Arm -
o (Five Places)
lnsuluiiun\
i ! O-Ring

H [ Ptug
: [ “” Positioning

B L E Bracket
— ———— Orifice

———Orifice
Plug
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The substitution of r = 1 + 7, 11 K 1, in equation (5) with ¥
= 0, gives
‘;“1 —rn = 0, 7'1(0) = € 71(0) =0 (28)
after the elimination of terms on the order of 2 or less. The solu-
tion of equation (28) is 7 = € cosh 7, so

r=14+e¢ecoshr; »r—1K1 (29)
Tor very small 7, this can be approximated as

r=({14e€ +er2/2;, r—1<«K1
TK1 (30)

These approximations are included in Fig. 1 to show how they
compare with equation (10).

Equation (30) shows that as time passes an initial perturba-
tion, ¢, will slowly grow to a new effective perturbation e(1 +
72/2). This suggests that the likelihood of survival of a nucleus
will generally increase as 72, so we shall assume

-1 = 2
gs Ntim 1 = tz'

Thus the distribution function for {e should be equation (24)
with 8 = 1 and m = 3, or

Laflta) = 25E(ta/a)? exp (—3la/ln) (31)

In the course of this discussion we have offered five predictive
expressions, all of which require experimental verification or com-
pletion. These are: the correlation equation (4), equation (9)
which anticipated that a jet will shatter when R ~ D, equation
(18) which requires an experimental constant, the criterion (23),
and equation (31). In the next section we shall report data
which will serve these ends and which will overlap the aerody-
namic and flashing breakup regimes.

Experiments

Two kinds of apparatus have been developed for this study.
One is the hot water loop shown in Fig. 3, the other is the liquid
nitrogen blowdown apparatus shown in Fig. 4. These apparatus
and our experiments are fully described in reference [19] and
we shall only briefly describe the experiments here.

The hot water loop was used to deliver both cold and super-
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heated water to Yaa, /i, 3/32, and !/s-in-dia sharp-edged orifices.
The breakup lengths of cold jets, and their variability, were
measured with the help of a strobe light, and the character of
breakup was investigated with still photographs.

The superheated jets exhibited far greater variability in Ly,
and far greater violence in breakup. They were photographed
with a Hyeam motion picture camera, from a distance, at about
8000 frames/sec. The jet velocity, V, was computed on the basis
of the upstream gage pressure and a velocity coefficient. Care
was taken to insure that the flow was substantially subcooled
upstream during the superheated jet experiments.

The liquid nitrogen blowdown tests could only be done with
superheated liquid since there was no way to bring the nitrogen
below its saturation temperature in the pressure vessel. Both
still and high-speed motion picture photography was used to ob-
serve jet breakup. Little could be done with strobe light obser-
vation because blowdown only lasted on the order of a minute.
Blowdown was initiated by knocking away a spring-loaded brass
plug, after taking care that no temperature stratification existed
in the tank, and that the liquid was saturated. The pressure
remained constant within the accuracy of the gage for almost the
entire blowdown period. This is consistent with Swanson’s [21]
equation for the back-pressure, based on the consetvation of
energy, and with Swanson’s observations during the blowdown
of water in a similar apparatus,

The diameter, D, of the jet was computed by multiplying the
orifice diameter by the square root of the coefficient of contrac-
tion. This in turn was obtained from a summary of coefficient
of contraction data given by Huang [22] for small orifices. Data
will be identified here on the basis of the orifice diameter, but all
computations will be based upon the actual diameter, D, of the
jet.

Results and Discussion

Cold Water Breakup. The observed breakup lengths of cold water
jets are presented in dimensionless form in Fig. 5. The original
data are tabulated in [19] and the nondimensionalization is that
suggested by equation (4). All but one stray point fall within
about =20 percent of
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IJZ,

D v/We
in the range of aerodynamic breakup. There is a transition
region in the neighborhood of Re = 48,000 (for p,/p, =~ 0.0012);
and below Re = 35,000 equation (1a) is satisfied. In the present
case in (D/26) ~ 11.5 & .5 which is typical of such data.

Equation (32) reveals a far stronger decrease of L, with Re
than did previous data for injectors and turbulent tube discharge.

The Dwell Time for Superheated Jets. A total of eleven motion pic-
ture records with useful dwell time data are available to us. Six
movies of water jets were made and interpreted by Stephenson
[23], and reported in [9]. One was made by Lienhard using
Stephenson’s water loop which resembled our own and is pre-
sented here as part of the present data.* Three were made with
our water loop and one with our blowndown tank (see ref. [19]).

Of these records, eight provided enough bubble growth events
—100 or more—to make a reasonable histogram. The histograms
and other characteristics of these runs are presented in Fig. 6.
The remaining three film records—one liquid nitrogen run, and
two water runs from reference [9]—gave

= 2.75 X 109 Re™2 (32)

Nitrogen, 1/, in-dia-orifice, AT = 14 F, Ly = 0.32 msec

Water, 3/ in-dia-orifice, AT = 67 I, tss = 5.17 msec

Water, 3/ in-dia-orifice, AT = 60 F, lan = 4.09 msec

The histograms in Fig. 6 have been normalized to an area of
wnity to facilitate comparison with equation (31). This com-
parison is made in Fig. 7, where center points of all the histogram
blocks are plotted together with the equation. The data scatter
very consistently about the prediction with the exception of
three points. These correspond with spikes in the histogram
which result from the following phenomenon which we call
“standing breakup’’: At certain preferred locations repeated
flashing will oceur as “weak spots’’s flow into the disturbances

4 Data from this film are designated with a black eircle in Figs. 6
and 7.

5 “Weak spot” is a term that has been used in the cavitation litera-
ture to identify a nucleation site, or imperfection, in the liquid that
will be susceptible to nucleation.
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Fig. 7 Comparison of predicted and observed distributions of dwell
times

created by the preceding bubble. Standing breakup is very near
the mean {a when it occurs.

Equation (31) lies in the middle of the histogram points. The
points scatter broadly because there are only 100 to 300 events on
a single 100 ft reel of film exposed at 8000 frames per sec, in the
cases reported. Presumably the /s data would scatter less if
plenty of events were available at any condition. Equation (31)
is therefore borne out in our results.

The eleven dwell times have been nondimensionalized in ac-
cordance with equations (16) and (17), and plotted in Fig. 8 on

. 1
P versus ¥ ! coordinates. Since ® must approach zero as E ap-

proaches zero, the origin is also a legitimate point. The least-
squares-fit straight line through these points is given by

Py = 2.12 X 101 (18a)

The correlation coefficient for these data is 0.762 which indicates
acceplable correlation.

The data are repeated on In ® versus In ¥ coordinates and the
protective cooling limit as given by equation (23) is also included.
Here we see that the cooling time equals the dwell time at a time
that exceeds the observed dwell time in every instance. Thus the
cooling criterion is not violated in any instance. Equation (23)
explains why Brown and York suggested that breakup would not
oceur hefore a certain fairly high superheat was obtained, and
why Lienhard and Stephenson found no breakup in water jets
below about 260 F. In these cases, 77 — T was low enough
that {4 approached this criterion.

Some Qualitative Results of the Photographic Observations.  Fig. 10
shows four typieal photographs from the present study and one
from reference [9]. In one case a rectangular I-in. marker is
visible just below the jet. These photographs illustrate several
of the phenomena we have been discussing.

Fig. 10(a) shows a condition of capillary breakup in a waler
jet. Tig. 10(b) shows an example of a very symmetrical bubble in
the process of flashing in flashing in a water jet. This is about as
large as bubbles ever grew during flashing and it is about four
times the diameter of the jet. With any asymmetry in the loca-
tion of the bubble, bursting would oceur at a smaller diameter
than this. The typical bubble would grow to about twice the
jet diameter, or to £ = D. Thus the assumption that bursting
occurs at & = D was a reasonable one to use in equation (9).

Fig. 10(c) shows what appears to be aerodynamic breakup in
a liquid nitrogen jet. However, substitution of the parameters
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Fig. 9 Variation of dimensionless dwell time and dimensionless cooling
time with superheat

in the figure into equation (32) yields L, = 37.6 in.—much longer
than breakup actually required in this case. What then actually
caused the jet to break up? Possibly moisture condensed onto
the lip of the orifice, roughening it. We believe that it is more
plausible that some bubble growth was taking place, even though
no individual bubbles can be clearly identified. The physical
properties of nitrogen are such that equation (8) predicts a much
slower bubble growth rate than for water. Therefore, bubbles
failed to perforate the nitrogen jets as they did the water jets.
The wide uncertainty on the one nitrogen data point in Fig. 8
stems from the fact that the first appearance of bubbles had to
be identified during this kind of “shredding’’ breakup—a situa-
tion that was unavoidable with our apparatus. The average
flashing breakup length was only about 1.6 in this case. TFig
10(d) shows a liquid nitrogen jet at a higher superheat than in
Fig. 10(c). Here there are obvious examples of flashing which
acts to augment breakup. Fig. 10(e) is a picture of the flashing
of a highly superheated water jet in the complete absence of either
capillary or aerodynamic breakup (from reference [9]). The
delay time here is shorter, by virtue of both higher superheat and
larger cross-sectional area, than in Fig. 10(b). Several simulta-
neous flashing events are evident in Fig. 10(d) while only one
oceurs in Iig. 10(b),

Summary

If flashing does not occur first, in a jet of superheated liquid
leaving a sharp-edged orifice, the jet will either break up as a result
of aerodynamie instability, in which case L, will be

L, = 275 X 10 D +/We/Re?; e > 48,000  (32a)
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(a) 0.051-in-dia cold water jet; V = 24 fps; Re = 3820; We = 845

(b) 0.051-in-dia superheated water jet; V = 108 fps; AT = 70 F; Re =
170,000; We = 20,300

i 2

(e) 0.051-in-dic superheated liquid nitrogen jet; AT = 6 F; V = 29.4
fps; Re = 63,300; We = 12,000

(d) 0.051-in-dia superheated liquid nitrogen jet; AT = 10 F; ¥V = 37.7

fps; Re = 81,900; We = 21,200

(e) 0.079-in-dia superheated water jet [9]; AT = 79 F; V = 106 fps;
Re = 272,000; We = 45,000

Fig. 10 Examples of jet breakup under a variety of conditions

or it will break up as a result of capillary instability in which
case

L, = 11.5D \/We; Re < 48,000 (33)
with relatively little variability in either case. These results are
restricted to p,/p; = 0.0012 and they will give slightly high values
in the transition range 35,000 < Re < 60,000.

Flashing will not occur at all if it has not oceurred after a dis-
tance of 0.0205 VD%/a, or if

Journal of Basic Engineering

PrRe
D > 0.0205 —— Y/ 23
2 00205 Trge ¥ (23)

Ilashing will oceur in an average distance given by
L, = V({n + tw) (34)

where @y, is obtainahkle from equation (18a), and {4 is obtainable
from equation (9). Actually L, is a random variable. The extent
of its variability is specified by the variability of ¢y, and this in
turn is given by equation (31).

In the nitrogen jets ta2 > ta; thus early nucleation was followed’

by slow bubble growth. This combination (possibly helped by
other systematic complications) made breakup very hard to de-
scribe in this case.
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