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Natural materials such as bone, tooth, and nacre are nanocompos-
ites of proteins and minerals with superior strength. Why is the
nanometer scale so important to such materials? Can we learn from
this to produce superior nanomaterials in the laboratory? These
questions motivate the present study where we show that the
nanocomposites in nature exhibit a generic mechanical structure in
which the nanometer size of mineral particles is selected to ensure
optimum strength and maximum tolerance of flaws (robustness).
We further show that the widely used engineering concept of
stress concentration at flaws is no longer valid for nanomaterial
design.

Natural materials, such as shells (1–7), tooth (8, 9), or bone
(10–12), exhibit many levels of hierarchical structures from

macroscopic to microscopic length scales. Despite these com-
plicated hierarchical structures, we find it most interesting to
observe that the smallest building blocks in such materials are
generally on the nanometer length scale. Fig. 1 a and d shows that
enamel of tooth is made of long, more or less needle-like crystals
�15–20 nm thick embedded in soft matrix (8, 13). Fig. 1 b and
e shows that the nanostructure of bone consists of mineral crystal
platelets with thickness around a few nanometers embedded in
a collagen matrix (12, 14, 15). Fig. 1 c and f shows the ‘‘brick and
mortar’’ structure of nacre where the thickness of the aragonite
bricks is around a few hundred nanometers (1, 3, 5). Although
it is quite clear that the composite character of these materials
plays an important role, one important question remains: Why
is the nanometer scale so important? Although the stiffness of
biocomposites is similar to that of the mineral constituent, their
fracture energy can be several orders of magnitude higher than
that of the mineral. Monolithic CaCO3 shows a work of fracture
that is �3,000 times less than that of the composite shell (nacre)
(5). Generally, there is a well defined organization of the
components in the composite in the form of interlaced bricks
separated by soft layers. Mineral lamellae are separated by glue
(protein), which results in high toughness by stress-redistribution
and crack-stopping mechanisms (16). Previous researchers have
tried to address the mechanism of high toughness of these
materials from various points of view including their hierarchical
structures (2–4, 17), the effects of mechanical properties of
protein on dissipating fracture energy (18), protein–mineral
interface roughness (16), and reduction of stress concentration
at a crack (19). However, the question of why the elementary
structure of biocomposites is on the nanometer length scale
remains unclear.

At the most elementary structure level, biocomposites exhibit
a generic microstructure consisting of staggered mineral bricks
shown in Fig. 2a. Jaeger and Fratzl (20) discussed the mineral
platelet arrangement in collagen fibril and developed a simple
mechanical model to estimate the stiffness of biocomposites.
Under an applied tensile stress, the Jaeger–Fratzl model can be
schematically represented by Fig. 2b, where the mineral platelets
carry the tensile load while the protein matrix transfers the load
between mineral crystals via shear. The path of load transfer in
the composite is thus simplified to a one-dimensional serial
spring system consisting of mineral elements (tension) inter-

spersed among protein elements (shear). The large aspect ratio
of mineral platelets compensates for the low modulus of the
protein phase. According to this simple model, the stiffness
(Young’s modulus) E of the composite can be expressed as
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where Em is the Young’s modulus of mineral, Gp is the shear
modulus of protein, � is the volume concentration of mineral,
and � is the aspect ratio of the mineral platelets (20). We found
that Eq. 1 compares very well with finite element calculations.
Fig. 2 and Eq. 1 indicate that the high stiffness of biocomposites
is achieved by the large aspect ratio of mineral platelets, that
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Fig. 1. Many hard biological tissues, such as tooth (a), vertebral bone (b), or
shells (c) are made of nanocomposites with hard mineral platelets in a soft
(protein) matrix. Enamel (d) is made of long, more or less needle-like crystals
�15–20 nm thick and 1,000 nm long, with a relatively small volume fraction of
a soft protein matrix (8, 13). Dentin and bone (e) are made up of plate-like
crystals (2–4 nm thick, up to 100 nm long) embedded in a (collagen-rich)
protein matrix (12, 14, 15). The volume ratio of mineral to matrix is on the
order of 1:2. Nacre ( f) is made of plate-like crystals (200–500 nm thick and a
few micrometers long) with a very small amount of soft matrix in between (3).
All of the composites share the structural feature of hard platelets with a very
large aspect ratio, arranged parallel in a brick-and-mortar-like fashion. An
unsolved problem is the question of why these crystals are in the nanometer
range.
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most of the load is carried by the hard mineral platelets, and that
the protein transfers stress between platelets via shear.

To ensure integrity and optimized strength of the composite
structure shown in Fig. 2b, the mineral platelets must be able to
sustain large tensile stress without fracture, whereas the protein
layer and protein�mineral interface must sustain shear stress
without failure. The fracture toughness of the composite thus
hinges on the tensile strength of mineral platelets. How to
optimize the strength of mineral platelets? A clue to this question
can be obtained from the following consideration. A perfect,
defect-free mineral platelet should be able to sustain mechanical
stress near the theoretical strength �th of solid. However, for
robust design one must consider the possibility that the mineral
platelet actually contains crack-like flaws. What we have in mind
as crack-like flaws are protein molecules that have been trapped
within the mineral crystals during the biomineralization process.
The soft ‘‘protein inclusions’’ within a hard mineral crystal are
mechanically equivalent to embedded microcracks due to their
low modulus. Consider a thumbnail crack in the mineral platelet
as shown in Fig. 3a. The fracture strength of this ‘‘cracked’’
mineral platelet can be calculated from the Griffith criterion as

�m
f � �Em�, � � � �

Emh
, [2]

where � is the surface energy and h is the thickness of mineral
crystal. The parameter � depends on the crack geometry
and is approximately equal to �� for the half-cracked platelet
(i.e., crack depth equals half of the platelet thickness). Fig. 3b
compares this result with the strength of a defect-free crystal. We
see that there exists a critical length scale

h* � �2
�Em

�th
2 [3]

below which the fracture strength of a cracked crystal is identical
to that of a perfect crystal. Taking a rough estimate � � 1 J�m2

(19, 21), Em � 100 GPa, and �th � Em�30, we estimate h* to be
�30 nm. This length scale indicates that the nanometer size of
mineral platelets in biocomposites may be the result of fracture
strength optimization. When the mineral size exceeds this length
scale, the fracture strength is sensitive to structural size and the

Fig. 2. A model of biocomposites. (a) A schematic diagram of staggered mineral crystals embedded in protein matrix. (b) A simplified model showing the
load-carrying structure of the mineral–protein composites. Most of the load is carried by the mineral platelets whereas the protein transfers load via the high
shear zones between mineral platelets.

Fig. 3. A length scale for optimized fracture strength in mineral platelet. (a) A schematic diagram of mineral platelet with a surface crack. (b) Comparison of
the fracture strength of a cracked mineral platelet calculated from the Griffith criterion with the strength of a perfect crystal.
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material is sensitive to crack-like flaws and fails by stress
concentration at crack tips. As the mineral size drops below this
length scale, the strength of a perfect mineral platelet is main-
tained despite defects. The failure criterion is governed by
theoretical strength rather than by the Griffith criterion and the
material becomes insensitive to preexisting flaws. Therefore, we
make the following postulate: The nanometer size of the mineral
crystals in biocomposites is selected to ensure optimum fracture
strength and maximum tolerance of flaws (for robustness).

The critical length of 30 nm is only a rough estimate repre-
senting the objective of unconstrained biological optimization
with respect to fracture strength of mineral crystals. One may
note that the thickness of mineral platelets in nacre can be
several hundred nanometers larger than the estimated value. In
our opinion, the thickness of mineral platelets in nacre may be
a result of constrained optimization caused by the large volume
fractions of mineral content in nacre. For example, at a mineral
volume fraction of 95% and a protein layer thickness of 10 nm
(which is already approaching the minimum size of single protein
molecules), the mineral crystal needs to be of a minimum
thickness of 200 nm! This boundary condition results in con-
strained optimization with respect to fracture strength.

Fracture of solids involves breaking of atomic bonds, which is
inherently a nonlinear process. To model failure mechanisms in
nanomaterials, we have developed a virtual internal bond (VIB)
(22, 23) method, which incorporates an atomic cohesive force
law into the constitutive model of materials. Fig. 4 shows the
stress field in a surface cracked mineral platelet calculated by a
VIB-based finite element analysis as the platelet is loaded close
to the failure limit. It shows that the stress field becomes more

and more uniform as the thickness of the platelet decreases and
eventually reaches the theoretical strength at the critical length
scale. This finding is in drastic contrast to the classical engineer-
ing concept of stress concentration at macroscopic flaws.

The analysis discussed here also shows that there is an
optimum aspect ratio of the mineral platelets

�* �
1
	 p

f �πEm �

h
, [4]

where 	 p
f is the shear strength of protein matrix. This equation

can be derived as follows. A simple force balance in the
nanostructure model shown in Fig. 2 indicates that the tensile
stress �m in the mineral platelets is equal to the product of the
mineral aspect ratio with the shear stress 	p in the protein matrix,
i.e., �m � �	p. The optimum aspect ratio corresponds to the
condition that protein and mineral fail at the same time, i.e.,
�* � � m

f �	 p
f (the superscript denotes ‘‘failure strength’’). As-

suming that the mineral strength is governed by the Griffith
criterion of Eq. 2 immediately leads to Eq. 4. We note that a large
mineral aspect ratio is required if the mineral strength is much
higher than the shear strength of the protein or the protein�
mineral interface. Eq. 4 shows that the optimum aspect ratio of
mineral platelets is inversely proportional to the square root of
the mineral thickness: the smaller the platelets, the larger the
optimal aspect ratio; the larger the aspect ratio, the larger
the stiffening effect. The mineral crystals in bone have thickness
on the order of a few nanometers and aspect ratio 30–40 and
those in nacre have thickness on the order of a few hundred

Fig. 4. The color map of normal stress �22 at critical fracture load in a mineral platelet containing a thumbnail crack with depth equal to half of the platelet
thickness. The calculation is performed by using a 3D finite element method based on the virtual internal bond model, as the thickness of the mineral platelet
decreases toward the critical thickness for optimum fracture strength. At large thicknesses (h�h* � 20,200), the stress concentration at the crack tip significantly
reduces the fracture strength �f from the theoretical strength �th. Near the critical thickness h*, the stress concentration vanishes and the strength approaches
the theoretical strength.
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nanometers and aspect ratio �10, which roughly corresponds to
the scaling law predicted by Eq. 4.

The question of whether an optimum thickness of protein layer
exists between mineral platelets is also very interesting. This
would correspond to an optimum volume fraction of mineral
content. This question should be answered by a careful study of
dynamic failure mechanisms of biocomposites. Our preliminary
studies of impact fracture indicated that the soft protein phase
plays a key role in alleviating impact damage to mineral platelets
and to protein�mineral interfaces. Qualitatively, the protein
matrix behaves like a soft wrap around mineral platelets and
protects them from the peak stresses caused by impact and
homogenizes stress distribution within the composite. The en-
doskeleton of animals contains much higher protein content and
lower mineral concentration than the seashells. According to Eq.
1, to achieve the same level of stiffening, a lower volume fraction
� must be compensated for by a large aspect ratio �, and larger
aspect ratio means smaller thickness. This explains why the
mineral platelets in human bone have much smaller size and
larger aspect ratios in comparison with those found in seashells.

We note that the bio-inspired length scale for optimum
platelet strength

�Em��th
2 [5]

is an intrinsic material parameter that measures the size of
fracture process zone in a brittle material. The major conclusion
of this investigation is that materials become insensitive to flaws

as soon as the structural size reaches this critical length. This
result should be of general significance in guiding design of new
nanomaterials. Also, hierarchical laminated structures are
needed to produce materials capable of sustaining more complex
mechanical stresses. Future research should be directed at
understanding the coupling between different levels of hierar-
chical structures.

As a final note, we want to point out some limitations of our
simple analysis. Although we have emphasized the overarching
importance of mechanical strength as a fundamental driving
force for nanostructural optimization in biological materials,
such optimization in individual biosystems can be subjected to
many other constraints, including stoichiometric conditions and
chemical factors that could affect the size of mineral crystals (24,
25). We have already mentioned the constraint caused by
mineral volume fraction and minimum size of protein molecules.
These factors play important roles in the nucleation and forma-
tion of mineral crystals and lead to constrained optimization of
biosystems. Our analysis has only emphasized that there may be
an overarching driving force of a scale selection motivated by
mechanical strength considerations and, as such, it does not
diminish in any sense the important roles of the chemical
environment in the biomineralization process.
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