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Preface

This book has been developed to meet the needs of advanced
engineering undergraduate and beginning graduate students for
an introduction to statistical thermodynamics. The student that we
have envisioned has had at least an introductory course in ther-
modynamics; he may or may not have had a course in modern
physics; and he has had no physics beyond that level. Nor do we
presuppose a course in statistics or a mathematics background
beyond that which he normally would have developed for his upper-
division engineering work. Such a student, although he is capable
of learning fairly rapidly, must start at the beginning level as far as
the concepts of quantum mechanics and modern physics are
concerned.

During the past seven years we first developed class notes,
and subsequently organized them into the present text. This text
has been developed in close conjunction with classes at the Uni-
versity of California at Berkeley, Washington State University at
Pullman, and the University of Kentucky at Lexington.

What we have evolved is an approach that escalates the ped-
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agogical level as it proceeds. The twelve chapters are arranged into
a sequence of basic subject groups presented on three pedagog-
ical levels as shown,

Level 1

{Review and
Elementary)

Level 2

(Intermediate)

1

Introduction

2

Kinetic description
of dilute gases

3

Classical statistics
of independent
particles

11

Elementary kinetic
theory of transport
processes

7

Thermostatic
properties
of ideal gases

4,5,6

Quantum mechanics
and statistics

Level 3 12 8 9,10
{(Advanced) Kinglic theory of Statistical- Thermostatic
dilute gases mechanical properties
ensembles of real substances

The first three chapters are intended to establish an ele-
mentary background, and a language, on which the material in the
subsequent chapters is based. Our experience has shown that
these should not be covered too rapidly. The fourth and fifth chap-
ters largely contain the needed material that would have been cov-
ered in an elementary modern physics course. The detail in which
they should be treated will vary according to the background of the
class. Chapters 6 and most of 7 and 11 would complete an intro-
duction to the methods of statistical thermodynamics. Depending
upon the level of the students, a one-semester course can en-
compass some or all of the additional material and applications
developed in Chapters 8, 9, 10, and 12.

The exposition of the subject is developed with the following
objective in mind: We want to bring the student to an appreciation
of the role of statistical-thermodynamics methods so that he will
understand why they are important, what they can do, and how they
can be applied to various engineering systems. Therefore, we have
attempted to stay relatively close to the historical evolution of the
subject and we have sought to carry this evolution to its fruition in
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applications. In this connection we have also tried to keep the unity
of the subject clear in the student’s mind by showing respect for
the axiomatic structure of the subject.

In establishing methods for computing the physical properties
of substances in equilibrium, for example, we have made strong use
of the notion of a fundamental equation or generating relation for
physical properties. This idea is first developed in Chapter 1 from a
strictly macroscopic viewpoint. In subsequent chapters we take
care to show how the microscopic generating functions (partition
function, g potential, grand canonical partition function, etc.) relate
to the macroscopic ones (entropy, energy, the free energies, etc.).

We have attempted, wherever it is appropriate to do so, to
demonstrate the usefulness and strength of statistical thermo-
dynamics through simple applications that are importantin modern
engineering problems. Falling into this category are, for instance,
the treatment of the Lighthill dissociating gas and the singly ionized
gas, the emphasis on the statistical-mechanical basis of the law
of corresponding states in evaluating both thermostatic and trans-
port properties of gases, the statistical-thermodynamic description
of the solid and liquid states, and the calculation of thermal and
electrical transport in solids.

We owe a great debt of gratitude to students — too many to
name — who have generously helped us to improve the successive
drafts of the text in the form of class notes. Professors Creighton
A. Depew of the University of Washington and Ernest G. Cravalho
of the Massachusetts Institute of Technology each provided very
helpful and extensive commentaries on the semifinal manuscript.
The University of Kentucky contributed heavily to the mechanical
burden of preparing the book; Mrs. Linda Boots carried the major
task of typing the manuscript; and Mrs. Mardell Haydon and Mrs.
Bonnie Turner completed the final revision. We are also grateful to
the University of California and Washington State University for
many material contributions to completion of the work.

During the course of this effort we have discovered why authors
inevitably thank their wives. Their contributions are real, as it turns
out. We are very grateful to Di-hwa and to Carol for helping us to find
enough peace and quiet within the normal demands of our house-
holds to get the task done.

Chang L. Tien
John H. Lienhard
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l mtroduction

SUBJECT OF
THERMODYNAMICS

Thermodynamics is commonly thought of as that subject which
treats the transformation of energy and the accompanying changes
in the states of matter. Surely there are few, if any, disciplines that
bear more pretentious definitions than this. In its primal concern
with energy and matter, thermodynamics lays claim to the atten-
tion of all technical people. The scientist and engineer alike must
either come to grips with the subject or suffer the severest limita-
tions upon their professional lives.

The name thermo-dynamics calls to mind the idea of thermal
energy in transition. The subject is so named because it describes
the effects of the dynamic phenomena of heat and work upon sys-
tems. The name is misleading insofar as the methods of classical
thermodynamics can only describe systems in equilibrium. When a
system undergoes a process, classical thermodynamics can do no
more than describe the action in terms of static end conditions. In
particular, it discloses nothing about the rate of real processes.

1
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NATURE

The fact that our subject has grown up under the name of ther-
modynamics is related to an accident of history that profoundly
influenced its subsequent development — a matter we shall say
more about in Sec. 1.3. Lately, the names thermostatics, equilibrium
thermodynamics, and reversible thermodynamics have been pro-
posed as more descriptive and accurate titles. Their use has been
encouraged by the development of the subject of irreversible thermo-
dynamics, or nonequilibrium thermodynamics, or simply thermo-
dynamics (in contrast to thermostatics). On the macroscopic level
this latter subject is concerned with coupled transport processes
such as the simultaneous flows of heat and electrical current in a
thermocouple.

But our concern is with learning the gross thermostatic and
thermodynamic behavior of systems in terms of the microscopic
phenomena in which such behavior has its origins. The present
study of statistical thermodynamics will accordingly give greatest
emphasis to those manifestations of the general microscopic be-
havior of matter that are thermodynamic in nature.

OF

STATISTICAL
THERMODYNAMICS

The laws of macroscopic thermodynamics clearly must arise out
of the microscopic action of myriads of atoms or other particles. In
seeking to determine how these laws arise, we might be tempted to
embark upon the straightforward prediction of the action of the in-
dividual molecules in a group of molecules in the following way.

Letalarge number, N, of particles occupy a box. For each parti-
cle we must write a second-order differential equation of motion,
d3r;
dt:
where r; and r; are the position vectors of the jth and jth particles,
m; is the mass of the ith particle, and tis time. F,,(r,, r;, t) is the com-
plicated force of interaction exerted on the jth particle under con-
sideration by the jth particle and the container walls. Each of these
N coupled equations requires two initial conditions,

Z Fidri,ri, =m
I

r,=a and 1, =b whent =10

If N were small, this problem could be done on a computer.
However, N is on the order of 10'* to 10°° molecules in real physical
systems of interest. Even the most modern digital computers could
not begin to solve a problem of such complexity.!

'Another impediment to this attack is the fact that the Heisenberg Uncertainty
Principle precludes the precise simultaneous knowledge of r, and r, at the
instant t = 0. This is discussed in Sec. 4.5.
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But there is a far more important reason why such a straight-
forward attack upon the problem cannot be fruitful. Such a com-
plete description of individual particle action would not disclose the
gross thermodynamical behavior in which we are interested. It would
reveal only the trees, not the forest.

Clearly, the detailed information about particle behavior must
be blurred in some way if a meaningful description of gross be-
havior is to be obtained. This is what our physical senses do for us
automatically when we experience any physical behavior. The
physical size of organized animal life is, in fact, determined on this
basis. The smallest neural component of an animal must be large
with respect to molecular dimensions if it is to respond to average
molecular behavior. Otherwise it would respond to the action of in-
dividual molecules and behave in a chaotic way.2 Conversely, we
can be sure that any physical system that we experience directly is
composed of an immense number of particles.

The problem is then for us to develop analytical methods for
describing physical systems in the way that our senses describe the
physical world to us. We must develop techniques for averaging the
behavior of small particles so that, by ignoring detail, we can dis-
cover the gross effects of detail. Just as an insurance company
need be concerned only with the most probable vital statistics of its
policyholders and can ignore their individual characteristics, we
need only determine the most probable behavior of large groups of
molecules and can ignore their individual dynamics.

Statistical thermodynamics is the study of the techniques for
doing this. It is usually regarded as being composed of two sub-
divisions: statistical mechanics and kinetic theory. This division is not
sharp because both subdivisions are founded upon similar axi-
omatic structures.

Statistical mechanics is based on the idea that the equilibrium
state of a thermodynamic medium is the macroscopic state that
corresponds with the most probable microscopic state. The prob-
lem of statistical mechanics is that of determining what microscopic
state is most probable; and the results of statistical mechanics,
like those of classical thermodynamics, are applicable only to
equilibrium configurations.

The kinetic theory employs a somewhat more direct attempt to
average the behavior of individual particles. It takes into account
definite molecular models and the mechanical details of the motion
of individual particles. Itis characteristically more complicated, but
less abstract, than statistical mechanics. The great advantage of

*This matter is discussed and amplified by E. Schrédinger in What /s Life? and
Other Scientific Essays, Doubleday & Co., Inc., Garden City, N.Y., 1956, “What
Is Life?."
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the kinetic theory over statistical mechanics lies in its applicability
to nonequilibrium behavior and the prediction of transport prop-
erties.

HISTORICAL
1.3 DEVELOPMENT

MACROSCOPIC
THERMODYNAMICS

Thermodynamics has evolved fitfully and anachronistically over
the past two and a half centuries. Most of the phenomena em-
braced by the subject can now be explained by applying the laws of
classical dynamics and probability to atoms and molecules, using a
minimum of additional physical principles. On the gross level, how-
ever, a whole structure of new physical laws must be erected to
describe thermostatic behavior adequately. These laws cannot be
understood as easily in terms of human experience as can, for ex-
ample, the laws of mechanics. Consequently, the task of putting
them in order has been difficult and perplexing.’-4

Prior to the eighteenth century, nothing whatever had been
done in the field of thermodynamics. In 1695 G. W. Leibniz antici-
pated the first law of thermodynamics by showing that the sum of
kinetic and potential energies remains constant in an isolated
mechanical system. But it remained for the development of the
chemical and heat engine technologies of the eighteenth century
to stir a real interest in heat phenomena.

Several developments in the late eighteenth century laid the
foundation for statements of the first and second laws of thermody-
namics that were finally made in the early nineteenth century.
These included Joseph Black's presentations of the ideas of
specific heats and latent heats of phase change (about 1770) and
the enunciation of a plausible caloric theory in 1779 by his student
William Cleghorn. The caloric theory held that heat was a ''subtle
fluid'" with the following properties: It was elastic; its particles re-
pelled one another; it was attracted by ordinary matter in varying
degrees; it was indestructible and uncreatable; it was either sen-
sible or latent, and in the latent form could combine with solids to
form liquids or with liquids to form vapors; and it was possessed of
weight.

The indestructibility of caloric caused some difficulty. John
Locke in 1772, for example, had observed that axle trees were
heated by friction with the wheels, and Albrecht Haller in 1747 had

3J. H. Keenan, Mech. Eng. 80, No. 5, 79 (1958).
4P, S. Epstein, A Textbook of Thermodynamics, John Wiley & Sons, Inc., New

York, 1937, pp. 27-34.



1.3 Historical Development 5

(erroneously) explained the heating of blood in the lungs as result-
ing from frictional dissipation. Even Black had acknowledged that
frictional heating could occur. The caloric theory was further
challenged by the experiments of Count Rumford and Sir Hum-
phrey Davy in about 1799, who made observations of frictional heat-
ing which indicated that, if there were a caloric fluid, it surely could
be created.

Carnot's formulations of the second law of thermodynamics in
1824 appeared in turn to strengthen the caloric theory. He reasoned
that a constant amount of caloric *‘falls’ through a heat engine
in much the same way as water falls through a turbine, degrading
its potential for doing additional work as it does so. The quantita-
tive experimental work of James Joule from 1843 to 1849, however,
placed the law of conservation of mechanical and thermal energy
— the first law of thermodynamics — on firm footing.

Despite Joule's work, the caloric theory persisted for a few
more years while an argument was waged over which of the two
thermodynamic laws — Joule's or Carnot’'s — was correct. It ap-
peared that Joule's theory of heat contradicted Carnot’'s law, which
had been formulated in terms of the caloric theory. This question
was carried forward by the young physician H. Helmholtz in 1847
and by Lord Kelvin in 1848, and it was finally resolved by R. Clausius
in 1850. Clausius showed that Joule's work did not require that heat
and work be mutually interchangeable under all circumstances and
that Carnot's second law was correct despite his use of an errone-
ous theory of heat, because the second law and the first law are
necessarily independent of one another.

The subsequent organizational work of Clausius, Max Planck,
and J. H. Poincaré, and extensions of the subject by J. W. Gibbs,
essentially completed the structure of classical thermodynamics
by the beginning of the twentieth century.

There has been an important historical flaw in the growth of this
subject. Thermodynamics — with its powerful generality — was
born into a time when physics was not ready for it. The philosophy
of Immanuel Kant (1724-1804) had included a respect for empiri-
cism. A number of his disciples — J. G. Fichte (1762-1814), F. W.
Schelling (1775-1859), and G. W. Hegel (1770-1831) — carried the
great influence of Kant into the nineteenth century. However, they
turned toward a more a priori way of thinking, characterized by
Schelling's **Naturphilosophie,’” a kind of quasi-theological natural-
ism. This direction in philosophy collapsed with the death of Hegel,
and the second quarter of the nineteenth century found physicists

38. Carnot, Reflections on the Motive Power of Heat (translated by R. H.
Thurston), American Society of Mechanical Engineers, New York, 1943.
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rejecting the preceding period, which had fostered so much fruit-
less generalization and not enough experimentation. Now they
wanted to make nonabstract statements about physical behavior
on a sound empirical basis.

Thermodynamics was thus erected by pragmatic people —
engineers and physiologists — and it was hesitantly accepted by
physicists. This acceptance was only given to laws that were explicit
statements of the human experience upon which the subject was
based. The laws spoke of dynamic phenomena, such as working
and heating as they occurred in engines.

The name thermodynamics was accordingly given to a subject
that is stated in terms of the dynamic processes that bridge the
static states it describes. This kind of formulation has proved to be
a shortcoming because it renders the axiomatic structure more
complicated than it needs to be (something students have told their
thermodynamics teachers for nearly 100 years). Abstract reformu-
lations of classical mechanics, and of electricity and magnetism,
have long since been made, but only as late as the 1960s did thermo-
dynamics textbooks appear in which the axiomatic structure has
been improved. The particular formulation advanced by Callen® is
discussed in Secs. 1.4 and 1.5.

Attempts to develop clean formulations of thermodynamics,
based upon abstract axioms, actually predate Callen by more than
half a century. C. Carathéodory partially succeeded in this objective
in1909, and others have worked on such formulations subsequently.
During the past few years a number of other thermodynamics text-
books have advanced axiomatic (or partially axiomatic) formula-
tions. Although many of these differ from one another, they all seek
to describe the same basic physical behavior. The axioms of any
one system are always derivable from those of any other formu-
lation.

STATISTICAL
THERMODYNAMICS

Statistical thermodynamics has necessarily developed only
since the laws of macroscopic thermodynamics were stated. This is
the case because the subject is tied in at each step to the macro-
scopic limits of microscopic behavior. Nevertheless, well over 2000
years of argument underlay the birth of the subject in the latter
nineteenth century.’

6H. B. Callen, Thermodynamics, John Wiley & Sons, Inc., New York, 1960.
7Sir James Jeans, The Dynamical Theory of Gases, 4th ed., Cambridge Uni-
versity Press, New York, 1925, pp. 11-13.
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The argument began in about 400 B.c., when Leucippus (fifth
century B.c.), Democritus (460-370 B.c.), and others began to es-
pouse the view that all matter was ultimately composed of indi-
visible atoms. This was in conflict with the view of Empedocles
(484-424 p.c.) that the four continuous elements — earth, air, fire,
and water — were the basic stuff for all matter. Greek atomism held
sway until Aristotle (384-332 B.c.) placed his great authority against
it. Since much of Aristotle's philosophy proved an excellent vehicle
for Christian thought, the early Christian Church embraced and
promulgated his ideas. The Roman poet and philosopher, Lucre-
tius, upheld atomism during the first century s.c., but the atomic
view was given little other attention until the Renaissance.

Atomism reemerged after the first great mechanist descrip-
tions of the world were made by Copernicus (1473-1543), Kepler
(1571-1630), Galileo (1564-1642), and others. In 1658 P. Gassendi
claimed that all material phenomena can be referred to the in-
destructible motion of atoms and can therefore be described as
kinetic. Twenty years later R. Hooke independently advanced a
similar view, but credit for the first quantitative contribution be-
longs to Daniel Bernoulli, who in 1738 used a kinetic description of
gas molecules to derive Boyle's law.? This derivation, despite all its
relative crudities and simplifications, provides a clear illustration of
the way in which the behavior of individual particles is averaged to
give a gross result. It may be paraphrased as follows.

A cylinder contains a gas that is ideal insofar as its molecules
are very small and exert no forces-at-a-distance upon one another.
Itis sealed with a free-floating piston of variable weight w, where w
is directly proportional to the pressure p that it exerts (see Fig. 1.1).

Fig. 1.1 Bernoulli's thought model.

e l_|§?l]|

pVy) =py

pVy) = p, xyp ~volume, ¥V,

Xy ~ volume, V,

y

5D. Bernoulli, Hydrodynamica, Argentoria, 1738, sectio decima. A partial trans-
lation is given in J. R. Newman, The World of Mathematics, Simon and
Schuster, Inc., New York, 1956, vol. 2.
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Bernoulli noted that, as the equilibrium position of the piston
is changed from x; to x2 by an increase of weight, the distance be-
tween molecules, d, will decrease as the cube root of the volume
ratio, Vi/ V2. But the number n of particles adjacent to the piston will
only increase as the area ratio, which can be expressed as (V,/V2)2/3,

The force on the piston then increases as the number of im-
pacts of particles against it, or as n/d. Thus

pr_md_ (z)(z) »
p2 md  \V Vi 7

It has been implicitly assumed in obtaining this result that the
average molecular velocity is constant. If we accept for the moment
that this implies an unchanging gas temperature, the result is ex-
actly Boyle's law.

Bernoulli's brilliant foresight was, however, the last contribu-
tion to the kinetic theory before the development of macroscopic
thermodynamics a century later. The foundations of the kinetic
theory were laid by J. C. Maxwell, Clausius, L. Boltzmann, and
others between 1857 and 1881. In 1859 Maxwell developed the dis-
tribution law of molecular velocities in a uniform gas in equilibrium;
and later, in 1866, he first formulated the discussion of a nonuniform
gas in a proper mathematical way. In search of an improvement of
Maxwell's works, Boltzmann in 1872 established the H theorem and
the famous integrodifferential equation (the Boltzmann equation)
that the velocity distribution function must satisfy.

Maxwell's work on a uniform gas in equilibrium also spurred
discussions of his results by many others, which eventually led to
the recognition that these results did not depend on special molecu-
lar models. The science of statistical mechanics was then formed.
Virtually all that is fundamental to statistical mechanics was com-
pleted by Gibbs at the beginning of this century.®

The years from 1900 to 1927 have given us still another chapterin
the history of atomism. This period saw Planck’s invention of the
quantum concept and its later clarification by E. Schrodinger, W. K.
Heisenberg, and others. In fairness to the Aristotelian view of
matter in terms of qualities it should be remarked that the ideas of
quantization and indeterminacy have led us a long way back from
the Victorian belief that matter can be described in terms of ulti-
mately indivisible components. These ideas have also required im-
portant changes in the Victorian formulation of kinetic theory and
statistical mechanics, which are of concern to us.

“J. W. Gibbs, Elementary Principles in Statistical Mechanics, Yale University
Press, New Haven, 1902; Dover Publications, Inc., New York, 1960.
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POSTULATES
OF MACROSCOPIC
1.4 THERMODYNAMICS

In Sec. 1.3 we suggested that it might be convenient to abandon
the relatively cumbersome phenomenological laws of thermody-
namics in favor of a simpler set of abstract postulates. Callen!'® has
combined the physical information that is included in the laws of
thermodynamics into a set of four postulates. These postulates,
and the system of thermodynamics based on them, are not only
simple but they take a form very close to the form of the results of
statistical thermodynamics. It will therefore be a great help to us,
subsequently, if we review macroscopic thermodynamics from
this vantage point. The postulates are given as axioms of a logical
system and are considered justified a posteriori when the system
proves to conform with physical experience. By choosing axioms
that lead readily to the important thermodynamic relations, in-
stead of axioms that correspond directly with human experience,
Callen is able to set forth a very simple structure of thermody-
namics.

The postulates are, for the sake of convenience, stated in terms
of the behavior of simple systems. A simple system is one that is
macroscopically homogeneous, isotropic, and not subject to the
effects of electrical charge, chemical reactions, electrical force
fields, or surface effects. The first postulate relates to the existence
of equilibrium states.!!

POSTULATE 1 There exist certain states (called equilibrium
states) of simple systems that, macroscopically, are characterized
completely by the internal energy, U, the volume, V, and the mole
numbers, Ny, N2, ..., Ni, ..., N, of the r chemical components.

The first postulate is borne out in the example of a simple fluid
system that is initially nonuniform by virtue of, say, a temperature
or concentration gradient. If the system does not interact with its
surroundings, spontaneous processes will occur within the system
until the nonuniformities disappear. The state the system reaches

10H, B. Callen, op. cit.

"1The first postulate implicitly includes the state principle of phenomeno-
logical thermodynamics, which is often assumed tacitly in that discipline.
The state principle is the basis upon which we know that two (or fewer) in-
dependent extensive variables fix the state of a simple compressible sub-
stance.
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after sufficient time is unique and specifiable in terms of U, V, and
the N,'s alone.

The use of the extensive properties'2 U, V, and the N,'s as in-
dependent variables, which according to the first postulate fix the
equilibrium state of a system, is based upon the tacit assumption
that these variables are measurable.’? The postulate is thus mean-
ingful only if operational means can be proposed to measure these
variables. The volume is clearly measurable, and knowledge of the
number of moles of the chemical constituents is part of the specifi-
cation of the given system. That the internal energy is also measur-
able has to be demonstrated in the following two steps:

1. It is possible to manufacture walls that come as close to
beingimpervious to energy loss as one might wish to have them: An
ordinary Thermos bottle, for example, can be filled with a fluid; the
stopper can be removed, and a stirrer through which work might
enter can be introduced. A known amount of work can then be done
upon the fluid to change its state. The limit of the perfectly impervi-
ous Thermos bottle (or wall) will be that which yields a maximum
change of state.

2. The change of energy of the system between any reference
state and the state of interest can then be measured as long as the
latter state can be reached from the former by transferring work to
or from the system. To do this one need only measure the work
done on or by the system while it is encased in energy-impervious
walls.

Notice that the terms work and energy are considered to be un-
derstood intuitively (or from the independent study of mechanics).

Still another point of greatinterestin the first and in the remain-
ing postulates is that the term ‘*heat transfer’’ never appears. It is
instead a defined quantity. If work is delivered to or received by a
system in a lesser amount than the change of energy of the system,
the walls are then not impervious to energy transfer by means other
than work. We call such means heat; thus: The difference between
the work transferred to a system and the resulting increase in its energy
shall be called heat. This definition is the same as the first law of
phenomenological thermodynamics.

The second and third postulates give the answer to a basic
problem that cannot be answered with the aid of the first postulate

12An extensive property is one that increases in direct proportion to the num-
ber of moles of the system for which the property is written. Properties that
are independent of the number of moles are called intensive.

3We see, subsequently, that from the microscopic viewpoint a more com-
pelling reason for using U, V, and the N,'s is that these quantities have
fundamental microscopic meaning.
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alone. Suppose that an isolated system'4 is made up of several sub-
systems which may or may not be isolated from one another. The
problem is then that of determining the final state of this composite
system when any such internal constraints as might exist (e.g.,
walls of any kind) are removed. The first postulate implies that such
a final state will be unique but gives no way of determining it.

The second and third postulates provide means for solving this
problem, which is the archetype of all problems in thermody-
namics.

POSTULATE2 There exists a function called the entropy, S, of the
extensive parameters of any composite system, defined for all
equilibrium states and having the following property: The values as-
sumed by the extensive parameters in the absence of an internal
constraint are those that maximize the entropy over the manifold
of constrained equilibrium states.

POSTULATE 3 The entropy of a composite system is additive over
the constituent subsystems. The entropy is continuous and differ-
entiable and is a monotonically increasing function of the energy.

The second postulate is couched entirely in terms of equi-
librium states. It says that when a composite system in an equilib-
rium state departs from this state because a constraintis removed,
it seeks one of a number of new equilibrium states. It seeks the one
for which the entropy is greatest. It would be impossible, however,
to write a quantitative expression for the entropy function without
the third postulate.

The additivity property in the third postulate means that

S(U, V,Ni, ..., N) =D SaU, Vo, N;@, ..., N*) (L1)
where the superscript « denotes the ath system. This property
when applied to A identical subsystems gives

S(ANU, AV, AN, ..o AN) = AS(U, V, Ny, ..., N) (1.2)

In other words, the entropy of a simple system is a function of the
extensive parameters that is homogeneous to the first order.
The monotonically increasing property of the entropy function

implies that
aS
(m)v.mm >0 (1.3)

I4Anisolated system is one that isimpervious to heat, mass, or work transfer,
As such it has rigid, adiabatic, and impermeable walls.
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Thisislatershown to be equivalenttothe requirement that temper-
ature is never negative.

The continuity and differentiability properties allow us to make
a unique transformation of the equation

S=SW,V,Ni...,Ny) (1.4)

into the form

U=UGS, V,Ni...,N) (1.5)

That is to say that the energy is a single-valued, continuous, and
differentiable function of S, V, and the N;'s.

The combined statement of Postulates 2 and 3, which rigorously
defines the entropy function, is equivalent to the second law of
thermodynamics.

POSTULATE 4 The entropy of any system vanishes in the state

for which
au
(BE)V.Ni'a =0

The fourth postulate is shown in Sec. 1.5 to be equivalent to
Planck’s statement of the third law of thermodynamics, which re-
quires that entropy vanish at the zero of temperature.

The way in which the postulates answer the basic problem of
thermodynamics — that of defining the state to which an iso-
lated system will tend when an internal constraint is removed
—isveryinteresting. The basic or archetypal problem becomes that
of evaluating the entropy function, or of writing Eq. (1.4). Therefore,
if we can write this function for a system, we can obtain all the thermo-
dynamic information about the system from it. This fact is of focal
interest in Sec. 1.5.

EXAMPLE 1.1 The following expression was offered as an approxi-
mate representation for some thermodynamic data:

S = constant (@)m
"4
Can this be a legitimate expression?

To answer this question we must assure ourselves that Sis con-
tinuous, differentiable, monotonically increasing in energy, that it
vanishes when dU/dS|y » vanishes, and that it is additive or ex-
tensive.

The cube-root function is continuous and differentiable and

as| constant( N

1/3
5-5” = 3 ) = positive

vV
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so the first three conditions are met. We also see that

au

et r~ U213 ~u §2
aSl.n U S

so that this derivative vanishes with S.

However, if the mass of the system is doubled, the extensive
properties N, U, and V also double, but the resulting entropy of the
system does not double. Therefore, the purported equation does
not yield an extensive entropy function and cannot be correct.

FORMULATION OF
MACROSCOPIC
1.5 THERMODYNAMICS

FUNDAMENTAL EQUATION
OF THERMODYNAMICS

Equation (1.4) or its inversion, Eq. (1.5), is called the funda-
mental equation for a thermodynamic system because, when it is
known, all thermodynamic information can be found for the
system. However, the explicit formulation of the fundamental
equation for any actual system must await the statistical descrip-
tion of that system. Indeed, our primary aim in studying statistical
mechanics will be to establish the fundamental equation. Once
we have obtained it explicitly, macroscopic thermodynamics will
tell us whatever else we might wish to know about the system as a
whole.

We begin the formulation of a general theory by writing the
fundamental equation in differential form,

as as r as
%= Gu EY, TV 1 .
(GU)V,N.-',, e (3' V)U..av.-'s aies ; (aNi)U.V_N;"s diNi (1:6)

where N;signifies any mole number other than N,. The partial deriv-
atives in Eq. (1.6) are important enough to receive special symbols,

s)  _ 1 (38) _p (63) R
(aU)v.m-s“ T (av)u.wfr N oy~ 1 EDAD

where 1/T, p/T, and — u;/T are each functions of U, V, and the N;'s,
and where T, p, and yu; are called the temperature, the pressure, and
the chemical potential of the ith component, respectively.

Equations (1.7) are only given as definitions in the present
axiomatic formulation of thermodynamics. It remains for us to
prove that temperature, pressure, and chemical potential (thus
defined) have the same meanings that we are accustomed to giving
these words.

Itis easy to show that T, p, and u; are intensive properties. For
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example, the temperature of a system consisting of A subsystems
is identical to that of the individual subsystems, because

1 3
- a(w)so\u AV, AN, .. AN
. AS(U, V, N N.)
) A
1
-ES(U, V.Ni... Ny =73

Substitution of Eq. (1.7) into Eq. (1.6) then gives

dS = %rdu Edv— Z =Y (1.8)
i=1

which can be rearranged into the form

dU = TdS— pdV + Zp.dN (1.9)

i=1

where T, —p, and the y;'s are each functions of S, V, and the N;'s.
On the other hand, Eq. (1.9) could have been derived directly from
Eq. (1.5). The extensive variable and its associated intensive vari-
able in each term of Egs. (1.8) and (1.9) are known as conjugate
variables. For example, 1/T and U are conjugate variables. So are
—p and V or x; and N;, and so forth.

In the case of a simple system for which the mole numbers are
constrained to be constant,

=TdS — pdV (1.10)

The integration of Eq. (1.10) is restricted to quasi-static or rever-
sible processes by the equilibrium requirement of the second
postulate. The equation can nevertheless be used for any process,
because it only relates state points to one another. !f two points
are actually connected by an irreversible path, all we have to do is
to make our calculations along some other reversible path
between the same two points. From the definition of heat in Sec.
1.4 we can now write'?
dU = 8Q + Wk (1.11)
where, in this case, we specify that the heat and work must be done
reversibly. If the defined quantity, p, is indeed the pressure, as we
understand the word, then the reversible mechanical work is given
by the laws of mechanics as
Wk = —pdV (1.12)
15The symbol & denotes an imperfect or inexact differential — an infinitesimal

change in a quantity that cannot be expressed as a function of state
variables.
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Equation (1.12) is consistent with a sign convention that calls work
done on a system, positive. Then from Eq. (1.11) we obtain for re-
versible heat transfer

5Q.= TdS (1.13)

Equation (1.13) is consistent with our experience (as expressed by
phenomenological thermodynamics), so we can be satisfied that p
is the conventional pressure.

THERMAL EQUILIBRIUM AND
THE MEANING OF
TEMPERATURE

We must next relate the defined term temperature to the
intuitive understanding of temperature. Consider an isolated
system comprised of two subsystems separated by rigid, im-
permeable, but diathermal walls. Denoting the subsystems by the
subscripts 1 and 2 we can write

Ui + U: = constant (1.14)

or
du; = —dU, (1.15)
The system at equilibrium must satisfy the maximum entropy re-

quirement of the second postulate and the additivity requirement
of the third postulate. Thus, since the N,'s and V are constant,

_ (38 gy, 4 952 40 -
dS = dS; +dS; = (au. dU, + 9Us dUz) =0 (1.16)
Substitution of Eqgs. (1.7) and (1.15) into Eq. (1.16) gives, for dS,
1 1
dS = (:F1 - ~T—2) dui =0 (1.17)

It follows that at equilibrium
T =T

Suppose, now, that the subsystems had initially been sepa-
rated by an adiabatic wall and in equilibrium at temperatures T, and
T. such that T, > T.. Then let the adiabatic wall be replaced with a
diathermal wall so that the system is no longer in equilibrium. The
entropy of the system, in accordance with the second postulate,
assumes a larger value at a new equilibrium state such that

AS >0 (1.18)

If the difference between the initial values of T, and T; is small,
Eq. (1.17) can be approximated by

1 1
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Since the expression in parentheses is negative, AU, must also be
negative. It follows that spontaneous heat flow must take place
from bodies of higher temperature to bodies of lower temperature.
Thisisin agreement with our intuitive understanding of the temper-
ature. Similar considerations of mechanical and chemical equilib-
rium reveal that the defined pressure and chemical potential are
also consistent with our understanding of these words.

Itis now clear why the fourth postulate is equivalent to Planck’s
statement of the third law of thermodynamics — that the entropy of
any pure substance vanishes at T = 0. But what justification actu-
ally exists for the third law or the fourth postulate? Since we actually
have no direct experience of any kind at T = 0, any claims we make
must either be extrapolative or they must be based upon a micro-
scopic formulation.

The original statement of the third law was set down by W. H.
Nernst, who generalized certain experiments at low temperatures.
What Nernst actually found was that the change Au during any
spontaneous isothermal process appeared to be such that

. 0Au|

e (1.20)
But it is easy to show [see Eq. (1.34)] that (du/dT), = S/N, where-
upon Eq. (1.20) becomes

lim (AS) =0 (1.20a)
T—0

where AS is the increase of entropy in any spontaneous isothermal
process.

Nernst accordingly could conclude, on the basis of macroscopic
experiments, that the entropy approached a constant value as T
approached absolute zero. Planck’s subsequent claim that the value
of this constant should be zero was based upon Boltzmann’'s en-
tropy formula, S ~ In W. We discuss this expression in chapter 3.
For the presentit suffices to say that Wis the number of distinguish-
able ways that we can distribute the indistinguishable molecules of
the substance among the available energy levels. Planck thought
that only one arrangement was possible for a pure substance in the
zero-temperature state, and that S would have to vanish. The sub-
sequent development of modern quantum theory suggests that
some rearrangements might still be possible at absolute zero and
that the entropy could possibly remain finite. While the validity
of Planck's statement is still being argued, Nernst's hypothesis
continues to be an acceptable physical principle that appears to
be subject to no exceptions.
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EQUATIONS OF STATE

The intensive variables given in Eq. (1.7) are all of the form
(8S/9X)x ;.. The corresponding variables in the energy formula-
tion are

axX;

where P; is any intensive variable and X, is the conjugate extensive
variable. As a consequence of the homogeneity requirement we
can, if we wish, introduce A = 1/N, in the following way:

P, - (GU)X_’ = P(S, V, N1, ..., Ny (L7a)

P; = Pi(AS, AV, ANy, . .., AN))
_p(S VM Nt
B P"(Nr' NN/ """ N, '1) (1.21)

Each of the r + 2 equations for the P,’s now depends uponr + 1
new intensive variables. The fact that a simple system of r com-
ponents has r 4+ 1 independent variables or ‘‘degrees of freedom’’
is a special case of the Gibbs phase rule. Gibbs’s phase rule, which
we do not prove here, states that

f=r—42 (1.22)

where f is the number of thermodynamic degrees of freedom in a
system with r components and ® phases.

A relation among intensive and extensive properties such as
Eg. (1.7a) is called an equation of state. The fundamental equation
for a simple system can be obtained from r + 2 independent equa-
tions of state or vice versa. This can be nicely illustrated in the
following example. The fundamental equation of a perfect mon-
atomic gas (which we obtain by statistical-mechanical means in
chapter 7) is

s (@) comn [ (BT o

where the subscript  refers to a reference state and R? is the uni-
versal gas constant. Then the r + 2, or 3, equations of state are

1 4S8 3NRO
TS0 2 U £
dS  NRO
TV (1.2
and
B _9S _ S, o [(g)z(ﬁ)] e
T=an "N TR G) e\N R0
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These equations can be rearranged into the familiar relations for a
perfect monatomic gas,

U= 3NRT (or Cy = %g—u = %R") (1.27)
pV = NRT (1.28)
and
p = RT[¢(T) + In p] (1.29)
where
5 Sy NoR°T?/?
o(T) = 27 NeRO In VoTs (1.30)

EULER AND GIBBS-DUHEM

EQUATIONS

The extensive nature of internal energy enables us to write, as
we did for entropy,

UQAS, AV, ANy, .o AN = NUGS, V, Ny, .o ND) (1.31)
Differentiation of this expression with respect to \ gives

QUQS, ...) . . UQ\S, ...)
0SSt aowm

V4--.=US, V,...)
or

U=TS—pV+2 wN (1.32)
i=1

This can be rearranged as

1 p ~ i
S—-T—_U+?V—£=I?N, (1.33)
We will make use of this result later to evaluate the absolute
entropy of systems. Equations (1.32) and (1.33) are called the Euler
equations in the energy representation and in the entropy repre-
sentation, respectively.
Differentiating either form of the Euler equation and combining
it with the differential fundamental equation gives the Gibbs-
Duhem equation. Thus from Egs. (1.32) and (1.9) we obtain

SdT — Vdp +Z‘]N,- du =0 (1.34)

and from Egs. (1.33) and (1.8) we obtain

u d(%) + Vd(]—'i) = );I N, d(%) =0 (1.35)
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Either of these forms of the Gibbs-Duhem equation gives the rela-
tionship among the intensive parameters in differential form.

If all the equations of state are known for a system, their sub-
stitution into the Euler equation yields the fundamental equation
for the system. In other words, knowing all the equations of state
of a system is equivalent to having all conceivable thermodynamic
information about the system. If any one equation of state is
lacking, it can be obtained for use with the Euler equation (within a
constant of integration) by integrating the Gibbs-Duhem equation.

LEGENDRE TRANSFORMS

Up to this point the dependent variable, S or U, has been
expressed in terms of extensive parameters. But such intensive
parametersas T, p, and u; are often more easily measured than the
extensive parameters. In most systems the use of a combination
of intensive and extensive parameters as independent variables
is particularly convenient. Thus we should like to be able to trans-
form dependent variables that depend upon extensive parameters
into new dependent variables that depend upon intensive param-
eters or a combination of intensive and extensive parameters.
The transformation that accomplishes this without losing any of
the essential content of the original system is called the Legendre
transformation.

Consider, for example,

dueS, V,Ni,...,N) =TdS—pdV+ > wdN, (1.9
i=1

The following simple transformations allow us to exchange the
conjugate intensive and extensive parameters. Since

d(TS) = TdS + SdT (1.36)
and
d(pV) = pdV + Vdp (1.37)
substituting Egs. (1.36) or (1.37), or both in Eqg. (1.9) gives
d(U— TS) = —SdT— pdV + 3 w dN; (1.38)
or =
d(U +pV) = TdS + Vdp + 2 i dN; (1.39)
i=1
or

d(U + pV — TS) = —SdT + Vdp + 2, wi dN; (1.40)

i=1
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The newly generated functions are, in this particular example, the
Helmholtz function,

KT,V,Ni,...,.N)=U-TS (1.41)

the enthalpy function,

H(S, p, Ny, ... ,N)=U +pV (1.42)

and the Gibbs function,

G(T,p,Ni,...,N)=U+pV—TS=H—-TS (1.43)

Thus we have created three new forms of the fundamental
equation. While they contain the same thermodynamic informa-
tion as before, they are now expressed in terms of new indepen-
dent variables. In different situations it is often more convenient
to deal with different sets of independent (or natural) variables. In
general, we can define a new fundamental parameter, ¥(Po, X1),
in terms of the old fundamental parameter Y(X,, X;) as follows

ay
=Y — (a‘) Xo =Y — PyX, (1.48)
0

because if ¢ is differentiated we get

dﬂ'} = _XndP” + P| dX1 (1A45)

where P is éY/éX. The Legendre transformation can also be ex-
tended to change more than one independent variables as we did
in Eq. (1.43).

Another set of functions, and their corresponding independent
variables, can be obtained by transforming the entropy instead of
the energy. These transforms of the entropy are known as Massieu
functions.
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Ffl
_—(_l—r, V,N[,...,N,) =8 —

: u (1.46)

One of the Legendre transforms, the Gibbs function, has a
special meaning. Its definition, Eq. (1.43), combined with the Euler
equation, Eq. (1.32), gives

G =) wN; (1.47)
Hence, for a single-component system,

(1.48)

=
I
Z2le

Therefore, the chemical potential of a component in a multicom-
ponent system is the molar Gibbs function when the component is
left alone.

EXAMPLE 1.2 The energy density (U/V) of blackbody radiation is
known to be (4/c)aT4, where c, is the speed of light and ¢ the
Stefan-Boltzmann constant. Determine the form of the fundamen-
tal equation whose independent variables are Vand T, and obtain
expressions for pressure and the specific heats from it.

The energy form of the differential fundamental equation in
this case is

dU =TdS— pdV

The Legendre transform y, which will interchange the variables
T and S, is obtained from the same arguments that led to Eq. (1.41)
and introduced the Helmholtz function, F(T, V)= U — TS.

Now we need U(T, V)and S(T, V) for substitutionin F= U — TS
to complete the development of the fundamental equation. We al-
ready have U(T, V), and to get S(T, V) we can integrate the first of

Eq. (1.7),
1 o T V160T? _ 160 .
S-—([TdU)T-O—LT P dT_3C;TV
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where we have used the fact that S = 0 when T = 0. Thus

F= ( T‘*uﬁ’r‘*)v:—ﬂiw‘*
3¢ 3c

The equations of state consist of the expression for S(T,V),
above, and the well-known radiation pressure law,

aF 4
_-_BVT—s_(;T
or
_ v
P=3y

The specific heats of blackbody radiation are

[iN)
aTly

160,
Ct

and, since p = p(T),

TdT

EXAMPLE 1.3 We discover in chapter 8, in our consideration of the
‘“‘grand canonical ensemble,” that it is sometimes desirable to
characterize a single-component system with the independent vari-
ables 1/T, V, and u/T. What will be the appropriate dependent
variable  for a system such that (1, T, V, u/T) is the fundamental
equation for the system?

To obtain this variable we go to Eq. (1.8) and note that we wish
to reverse the conjugate variables 1/T and U, as well as —u/T and
N. Since V is already an independent variable we leave it alone,
The Legendre transform that will do this is obviously

u Nu

p=S-37+ T
But from Eq. (1.33) we see that this is exactly ¢ = pV/T. The result
can be divided by R” without any loss of generality. Thus we obtain

v 1
LA —,v,ff)
R'T T

The new dependent variable is a Massieu function and it is equal
to the compressibility factor, pV/R"T. The function f must reduce to
N in the ideal-gas limit. The evaluation of the equations of state in
this case is left as an exercise (Problem 1.10).
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LINEAR

TRANSPORT
1.6 RELATIONS

We have noted that the classical thermodynamics we have been
treating does not describe the nonequilibrium behavior of physical
systems and that other theoretical frameworks must be called upon
to treat such systems. On the microscopic level, kinetic theory can
be used. However, much of nonequilibrium behavior can, in fact,
be treated effectively with a macroscopic approach that falls out-
side the framework of macroscopic thermodynamics. This ap-
proach should be familiar to us as the one that leads to such
expressions as the Navier-Stokes equations, the energy or heat-
conduction equation, and the species or mass-diffusion equation.
These equations are derived on the basis of three linear transport
relations, which are the physical laws (or axioms) upon which the
macroscopic linear transport theory is based.

The first is Newton's law of unidimensional viscous shear,

du

- (1.49
ay )

T =

where 7 and u are the shear stress and fluid velocity in the x direc-
tion, y is the coordinate perpendicular to the plane of the shear
stress, and u is an empirical coefficient called the viscosity.

The second is Fourier's law of heat conduction,

(1.50)

where g is the heat flux and X is an empirical coefficient called the
thermal conductivity.
The third is Fick's law of mass diffusion,'¢

dn

Jn: = = dy

(1.51)
where J, is the mass flux, n the concentration, and D an empirical
coefficient called the coefficient of diffusion.

Like many other linear physical laws, these expressions are
approximations to a far more complex behavior. Any discussion of

"®Thisand Eq. (1.50) can be expressed for three dimensions in vector form as
q —AvTandJ, Dvn.We find inchapter2that Eq.(1.49)isone of nine
components of the tensor which fully represents the state of stress at a point.
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the underlying behavior and its complexities must be based on the
microscopic study of particle (electronic, atomic, or molecular) mo-
tions in the system under consideration. The microscopic kinetic
description is discussed in chapters 2, 11, and 12. In particular, we
develop the kinetic tools needed to deal accurately with transport
processes in dilute gases. One of the major results of the kinetic
description is the phenomenon of “‘coupling.’” If gradients of n and
T exist simultaneously, for example, then J, depends upon both
gradients; g also depends upon both gradients. The phenomeno-
logical theory of coupling phenomena constitutes the subject of
irreversible or nonequilibrium thermodynamics.!”

Equations (1.49), (1.50), and (1.51) are actually quite accurate
for processes in which only one gradient is present as longasu, T,
and n change very little in a distance equal to the mean travel of
molecules between collisions. In chapter 11, we show how these
linear laws follow from elementary kinetic considerations when
this is the case.

Problems 1.1 The following equations are purported to be fundamental

equations of various thermodynamic systems. Find those which are
not physically permissible, and indicate the postulate violated by
each. The quantities K|, K>, and K; are positive constants and, in all
cases in which fractional exponents appear, only the real positive
root is to be taken.

(a) S = Ki(NvU)13,
(b) S = Kx(V3/NU).
(c) U = K3(S2/V) exp (S/NRY).

1.2 Find two equations of state from the fundamental equation
for the diatomic ideal gas,

N UN\2 V [/ No\92
= s e () 2(%)"]
where Sg is [INoR?/2 — Ny (u/ o).

1.3 Find the fundamental equation and the equations of state of
a monatomic ideal gas in the Helmholtz function representation,
F = F(T, V, N).

1.4 Consider an isolated composite system consisting of two
simple systems separated by a movable diathermal wall that is
impervious to the flow of matter. Determine the condition of me-
chanical equilibrium.

7See, for instance, S. R. DeGroot and P. Mazur, Non-Equilibrium Thermo-
dynamics, Interscience Publishers, New York, 1962.
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1.5 Consider an isolated composite system consisting of two
simple systems separated by a rigid, diathermal wall, permeable to
one type of material and impermeable to all others. Determine the
condition of chemical equilibrium (no matter flow).

1.6 Find the Legendre transform of the entropy function with
1/T, V, and N as independent variables. Identify U, p/T, and /T as
derivatives of the transformed function.

1.7 Two systems of monatomic ideal gas are separated by a
diathermal wall. In system 1 there are 2 moles initially at 250°K; in
system 2 there are 3 moles initially at 350°K. Find U, U;, and the
common temperature after equilibrium has been reached.

1.8 One thousand liters of ideal He gas occupy a tank at{ atm
and 20°C; 1000 liters of ideal He gas occupy a second tank at 1 atm
and 80°C. If the tanks are rigid and adiabatic, find the final tempera-
ture and pressure in them after a connecting valve has been
opened. (The total energy is, of course, constant throughout the
process.)

1.9 One mole of a monatomic ideal gas is in a cylinder with a
movable piston. The surrounding pressure is 1 atm. How much heat
must be transferred to raise the volume from 20 to 50 liters?

1.10 Identify U, p/ T, and N as derivatives of the fundamental
equation in terms of ¢ in Example 1.3. Discuss the equations in the
ideal-gas limit.

1.11 Determine the Legendre transform (7, V, u) of the
fundamental equation F(T, V, N) = —NkT In [Z(T, V)/N], where k
is a constant and Z is a function of T and V.

1.12 Provethec,and ¢, must vanish for any substance as T— 0.

1.13 Given thatc.(T) = A + BT for a particular van der Waals
gas (see Eq. (9.27)), obtain the fundamental equation for the gas
interms of vand T.
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of dilute gases

2.1 INTRODUCTION

The explanation of ideal-gas behavior in terms of molecular action
is an exercise that demonstrates many of the basic strategies of
statistical thermodynamics. We use this exercise to develop tech-
niques and to clarify definitions that are useful throughout this
book. Before going to the more restrictive consideration of ideal
gases it is well to set down three very general hypotheses.

1. The molecular hypothesis states that matter is composed of
small discrete particles (atoms or molecules) and that any macro-
scopic volume contains a vast number of particles. This hypothesis
is, for example, satisfied in a very low density gas only if we consider
a ““macroscopic volume' to be one that is rather large. However, a
cubic centimeter of ideal gas at 0°C and 1 atm contains the stagger-
ing number of 2.7 x 10! molecules, so we seldom encounter cir-
cumstances in which the hypothesis fails.

2. The statistical hypothesis states that any macroscopic ob-
servation takes place over a length of time that is much longer than
any characteristic time scale of molecular motion. Such a time scale

27
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might be the average time elapsed between two subsequent colli-
sions of a given molecule. This would be on the order of 10-1° sec for
most gases at 0°C and 1 atm — much less time, indeed, than is
needed for any kind of macroscopic observation.

3. The kinetic hypothesis embodies whatever we choose to say
about the motions of molecules. Although by its nature itis more re-
strictive than the other two, it usually includes the assumption that
particles (atoms and molecules) obey the laws of classical me-
chanics.

The first two of these hypotheses are basic to both kinetic
theory and statistical mechanics. They are true physical hypotheses
in the sense that they explain certain qualities of microscopic be-
havior using an intuitive notion of “‘macroscopicness.’ Because our
technical backgrounds are such that we know at the outset all they
have to tell us about microscopic behavior, we might do better to
regard them as clarifications of the adjective *‘macroscopic.”

Such emphasis may appear to be unnecessarily pedantic, but
considerable confusion can follow failure to distinguish among
definitions, empirical facts, and the analytical results of combining
definitions and facts. This caution must be emphasized again in the
very important problem of fixing the notion of an ideal gas.

An “ideal gas’’ can be defined either in terms of the properties
of the molecules that comprise it, or in terms of the macroscopic
behavior of the gas. Either definition must be consistent with the
other, and neither definition should include requirements that do
not somehow appear in the other. For example, to include in the
microscopic definition of an ideal gas the requirement the atoms
are blue would be wrong, because there would be no macroscopic
manifestation of this blueness.

On the macroscopic level we define an ideal gas only by requir-
ing that it obey Boyle's and Charles’s laws:

Boyle's law: pv = fi(T) 2.1)

Charles’s law: = f2(p) (2.2)

~li<

The unknown functions f; and f, can be obtained by eliminating v
from Egs. (2.1) and (2.2):

fi(T
MO _ 11,0) 2.3)
p
Itis obvious from the form of Eq. (2.3) that

RO
f2(p) = F or fi(T) = ROT (2.9)
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Then, from either Eq. (2.1) or (2.2), we obtain

RO
;’? == (2.5)

and the constant RO is determined experimentally to be 1.986 Btu/
Ib,, mole-°R or 1.986 cal/g mole-°K.

Equation (2.5) is a particular case of Eq. (1.21) and is, in fact, the
same as Eq. (1.25); it is one of the three equations of state that are
needed to describe any substance. The other two,

1_(aS B (@)
T (GU)V.;\' and T \O0N/uv

depend upon specific-heat information and must await specifica-
tion of the particular kind of ideal gas before they can be worked
out. [Recall Egs. (1.23) through (1.26), which were claimed to apply to
ideal monatomic gases.]

We do not use the macroscopic definition directly in the present
study. However, the fact that Boyle's and Charles’s laws, later, are
derived from the microscopic definition will give us confidence in
the statistical methods.

The microscopic definition of an ideal gas imposes two restric-
tions upon its molecules. These constitute the kinetic hypothesis
for the gas:

1. The gas is dilute. Its molecules are so widely spaced that

(a) The combined volume of the particles is much less than
the total volume that they occupy.

(b) Intermolecular forces are only important during the brief
instant of collision and can be neglected at all other
times.

(c) The average duration of collision as defined above is
negligible with respect to the average time between
collisions.

Entries (b) and (c) tell us that the molecules are independent of one
another. They exert no influence upon one another except in the
brief instant of collision.

2. No energy is dissipated in the collisions.

TERMINOLOGY
AND BASIC
2.2 CONCEPTS

Before we can put the microscopic definition of an ideal gas to
use in the computation of macroscopic properties, it will be neces-
sary to establish a vocabulary with which to talk about molecular
behavior.
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POSITION VECTOR
The position vector r is (see Fig. 2.1)

v =ix+ jy + kz

I

and

3

r=irl =y +y2+2

MOLECULAR VELOCITY AND
SPEED

The absolute velocity of a molecule ¢ is
C=iu-jv+ kw

where u, v, and w are the component speeds in the x, y, and z direc-
tions, respectively (see Fig. 2.1). The speed c is the magnitude of the
vector c:

c=lc| = \u+v2+w?

MOMENTUM OF A PARTICLE
The momentum of a molecule or other moving object of mass m

is expressed either as a vector p or a scalar p:

p=mc or p=mc

LOCAL NUMBER DENSITY
The local number density n of particles of a gas is defined as the
number of particles in AV, divided by AV, where AV is a very small
increment of volume surrounding the point of interest. In any real
system AV would have to be extremely small before molecular mo-
tions could cause n to be perceptibly nonuniform. In the limit as
AV — 0, however, n has no meaning. The definition is therefore
couched in terms of a AV that shrinks to a very small, but still finite,
value.

Fig. 2.1 Velocity and position vectors.
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LOCAL MASS DENSITY

The local mass density p of a gas must also be defined on the
basis of a volume sufficiently large to contain a statistically ho-
mogeneous sample of particles. Thus p is the mass in a very small
increment of volume AV divided by AV.

MASS OF A MOLECULE

PHASE SPACE

The mass of a molecule m can be calculated from

M
m = (2.6)

where M is the molecular weight of the gas and N, is Avogadro’s
constant, N, = 6.02 X 1023 molecules /g mole. Thus, for example,
for oxygen (02)

32 g/g mole
6.02 » 1023 molecules,/g mole

M. = = 5.3 x 107} g/molecule

Throughout this book we view N, as a conversion factor that con-
verts N moles to N molecules, or m g mole to m g molecule. The
distinction need not be made explicitly because the requirement of
dimensional homogeneity dictates the correct units. We also note

that

p g/cm? = m g 'molecule X n molecules,/ cm? 2.7)

We now propose a method for simultaneously characterizing
both the position and the velocity of particles. The method sim ply
consists of identifying the six coordinates of position and mo-
mentum (or velocity) of a particle at a given instant. The hyperspace
defined by these six coordinates was given the name phase space!
by Gibbs, who found that it was expedient to deal with this space
mathematically.

Before we develop the notion of phase space further, it is well
torecollect some notions relating to position space. Figure 2.2 depicts
an infinitesimal volume element in position space. The element
located at position r has a volume? 6V, such that §V = dxdy éz.

Any coordinate scheme serves to display r and V. Figure 2.3,
for example, shows a volume elementin spherical coordinates which
will prove useful in our later work. In this case 6V can be expressed

(see Fig. 2.3) as éV = r sin 0 d¢ 66 dr.

1Technically the name ‘‘phase space is given only to momentum-position
space, not to velocity-position space.

2The free variation s of x, y, z, or Vis employed here in place of the differential
d because there is no functional restriction upon the variables and the

changes are wholly arbitrary.
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Fig. 2.2 Elemental volume in Cartesian position space.
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Fig. 2.3 Elemental volume in spherical coordinates.
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In a completely analogous fashion we can describe a velocity or
momentum ‘‘space’ in the coordinates u, v, and w or p,, p., and p,.
Just as 6V has the physical significance of being an infinitesimal
collection of adjacent positions that a particle might assume, an
element in velocity or momentum space is a collection of adjacent
velocities or momenta that it might assume. Accordingly, for Carte-
sian velocity coordinates we define

60 = du dvow

and
ob

0P 0P 0P = M3 682

It follows that for spherical velocity coordinates
60 = c2sin @60 d¢ éc

and

od = p?sinf 60 é¢ op
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Phase space is a six-coordinate hyperspace in which a *‘vol-
ume’" element &7 has the physical significance of embracingan in-
finitesimal collection of adjacent states of position and momentum
which a particle might assume: r = §x 8y 6z 5p. 6p. 6p.. This element
is usually represented schematically by a sketch such asis shown in
Fig. 2.4.

An insight into the conceptual utility of the phase-space repre-
sentation might be gained by reconsidering the relatively clumsy
representation that had to be used in its absence in Fig. 2.1.

The reader acquainted with the Heisenberg uncertainty prin-
ciple (see Sec. 4.5) might well wonder about the frequentimplication
that we intend to specify the exact simultaneous position and mo-
mentum of particles. There are, as it happens, circumstances in
which we can deal with particles as though they had exact locations
in phase space. In the many cases for which we cannot, however,
we will speak of particles as ‘‘occupying’” small finite elements in
phase space at given instants.

DISTRIBUTION FUNCTION
The concept of a distribution function fis among the most im-

portant notions in the field of statistical thermodynamics. It is the
basis upon which, time and again, we shall make the transition from
the behavior of single particles to the gross behavior of molecular
aggregates. To gain an insight into its meaning let us forget molecu-
lar aggregates and consider a large basket filled with equal num-
bers of red and black marbles.

Imagine that a blindfolded man reaches into the basket and
withdraws samples of 10 marbles. After each such observation, he
returns the sample to the basket and mixes it in with the rest.
Figure 2.5(a) shows the results of 1024 of his drawings. The number
of occurrences of different percentages of red marbles in the

Fig. 2.4 Elemental volume in Cartesian phase space.
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No. of observations
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Fig. 2.5 Distribution histograms: (a) a posteriori distribution and (b) a priori
distribution
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samples is plotted against these percentages. Such a plot is called
a histogram.

We can now obtain a posteriori or “‘empirical’’ probabilities
from Fig. 2.5(a). For example, in 130 drawings three marbles were
red; hence we would conclude that the likelihood of drawing three
red marbles in a sample of 10 would be 130,/1024, or 12.7 percent.

This problem is well known in applied statistics, and the distri-
bution of percentages can be predicted by the normal distribution.
The results would be a priori or “*theoretical’”’ probabilities, and they
would correspond with the a posteriori values under two conditions:
(1) if the number of experimental trials approached infinity, and (2)
if the experiment were absolutely unbiased. Figure 2.5(b) shows the
resulting a priori histogram, and in this case we note that the proba-
bility of drawing three red marbles is actually only 1201024, or 11.7
percent.

Our interest will lie with continuous random variables such as
molecular velocities instead of discrete ones such as the percent-
age of red marbles in a small sample. Suppose that we wish to
describe the statistical behavior of a random variable x which can
take on any value. In this case a histogram would have to be formed
by lumping together all values of the variable within given ranges
(e.g.,1t02,2t03,3to 4, etc.), because given values are not apt
to recur. Figure 2.6 shows such a histogram.

The probability that an event will take place in a given range of
the independent variable’ [x,_, x;) is then

N,

N (2.8)

®[xi1, Xi) =

*The notation [a, b) designates a range from a to b, including the point a but
excluding the point b.
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Fig. 2.6 Typical histogram.
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where N;is the numberofobservationsin [x;_;, x;)and N is the total

number of observations, or 3 N,. We should now like to define a

i=1
function f(x) which has the property that
[ ) dx = N, (2.9)
oS Fg=1

or4

]

[4’ fx)dx = N (2.10)

With the aid of the mean-value theorem and Eq. (2.9) it is easy to
show that

NI
- m (2

or, ifwedenoteas N,all observationsin the range[ — =, x), and con-
sider N, to be a continuous quantity,

de
f(x) = — 2.12
00 =", (2.12)
The function f(x) is called the distribution function. It provides a con-
tinuous representation of the distribution of an event in a continu-

*The lower limit of minus infinity applies for variables that assume all real
values. If x can assume only positive values, the lower limit can be taken
as zero.
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ous random variable. For the marble-sampling example it would be
[see the solid line in Fig. 2.5(b)] the normal distribution,

N —x2
f(x) = \'{2_7; - exp ( 252 ) (2.13)
where x is the difference between the number of red marbles and
the average number, 5, and is treated as a continuous variable. The
symbol ¢ denotes the standard deviation (or root-mean-square
deviation) of x from 5.

We also define a normalized distribution function, or probability
density function F(x) such that

F(x) = g—(}’[—m,x) 1 dN, (2.14)

X N dx
Using Eq. (2.10) we find that F(x) has the property that

fxr(x)dx=g=1

—

Thus the probability that x will always be observed in the range
— o < X < « is certain.

MOLECULAR DISTRIBUTION
FUNCTION

A very general molecular distribution function f(r, c, t) des-
cribes the time-dependent distribution of molecules in phase
space (actually in velocity-position space). It contains the complete
statistical description of the gas. For example, once it is known, ex-
pressions can be formed for the number of particles N in a finite
volume V,

e =je0 . gt
N(t) = [f[ f f [ f(r, ¢, t) du dv dw dx dy dz

over volume, V

=[f f(r, ¢, t) dQ2dV (2.15)
v/a

for the number density n of the gas,

n(r, t) =[ f(r, c, t) dQ (2.16)

and for the density p,

p(r, t) = mfn f(r, ¢, t) dQ (2.17)



2.2 Terminology and Basic Concepts 37

Much of the time we shall work with gases in equilibrium. In this
case there can be no variation in the gross state of the gas from
position to position and the gross state will be uniform in time. Thus

fequi]!brium = f(c 0n|y> (218)

The equilibrium density and number density will accordingly be
constant.

The physical nature of the equilibrium molecular distribution
function is such that it is always finite, positive, continuous, and the
limit of f as ¢ — « is zero.

MOLECULAR AVERAGES

Average values of such molecular properties as kinetic energy,
velocity, and momentum are very important to the prediction of
gross behavior. The properties vary greatly from particle to particle
ata given instant, and from instant to instant (by virtue of collisions)
for a given particle. If ¢(r, ¢, t) is some molecular property, the aver-
age value of ¢ will be the sum of the ¢'s for all the particles under
consideration divided by the number of these particles. Different
averages can be formed by averaging over different sets of par-
ticles. In all cases the ponderous summations that would otherwise
have to be made are avoided with the help of the distribution
function.

The most commonly used average, the local average ¢, is in
general position- and time-dependent. The local average of ¢ is de-
fined as the total amount of ¢ in an element of volume 8V divided by
the number of particles in éV. Thus

[ f #(r, ¢, t) f(r, ¢, 1) dQ] 1%

¢=
[[ f(r, c, t)dﬂ]av
2
f fo dQ
2

¢ =—F or T11 f fé dQ (2.20)
[fdn o
f

The ensemble average (¢) is an average over phase space —
over location as well as momentum (or velocity) — and in general it
is only time-dependent:

fffqbdl/dﬂ
(¢) =22 —— =~1ff fé dV dQ @2.21)
[/dedQ NJvia
vJa

(2.19)

or
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Consider, for example, the application of the local average to
the property c. We define the local average velocity ¢, = €, whence

1
co = ;[ ¢ fdo (2.22)

This clearly has the physical significance of being the gross velocity
with which the gas is moving locally. In accordance with Fig. 2.7, we
also define the velocity of a particle relative to the local element of
moving gas. This is called the peculiar or thermal velocity C of a
particle and it must satisfy the relation

c=¢+C (2.23)

It follows directly from Egs. (2.22) and (2.23) that C = 0. Conse-
quently,

C=(@{U+jV+km =0 (2.24)

where U, V, and W, are the x, y, and z components, respectively, of
C. Itfollows that U = V = W = 0. Finally, for a stationary gas (one in
which ¢y = 0), we have ¢ = C and € = C = 0. Thus the distinction
between ¢ and C need only be made when there is relative motion
in a gas.

EXAMPLE 2.1 Suppose that the molecular speed of N particles is
distributed between 0 and c.... according to the function

Ac(cnmx — C)

What are A and ¢?
The constant A gives us the relative scale of the distribution as
expressed by the number density n because

n=f-f(c)dc=fmm'—q-wdc+f 0 de
0 0 c""\X3 “max

Fig. 2.7 Thermal and gross components of molecular velocity.

Thermal velocity of the
molecule (relative to the
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Thus
2 3 \Cmex
"= M),
or
A =6n
The local average can then be written with the help of Eq.
(2.20) as

c=- cdc

n

1 -/‘“’"‘ 6n¢(Cunax — €)

0 cn:ax3
from which we obtain

C!II:\X

ol
Il

TRANSPORT OF MOLECULAR
PROPERTIES

A problem of very great importance in kinetic theory is that of
determining the rate at which molecular properties are transported
across any plane within the gas. In particular, the pressure is given
by the flux of molecular momentum at any point in the gas.

Let there be a fixed elemental area és in a stationary gas, or an
elemental area moving with velocity ¢y in a moving gas. Molecules
will then impinge upon the surface with thermal velocity C in either
case. Consider one of the molecules approaching és with velocity C
and let it be encased in a skewed cylinder of length Cét with és
forming one end. Furthermore, let 6t be selected small enough to
preclude collisions within the cylinder (see Fig. 2.8).

Fig. 2.8 Model for counting particles crossing a surface.

7
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The volume of the cylinder is C-(n és) ét, where n is a unit vector
perpendicular to és. Alternatively, the volume can be written as
C cos 0 és 6t, where # is the angle between C and n. The number of
particles per unit volume in the velocity range d is f d; hence the
number of particles in such cylinders over the velocity range d@ is
C-n fdQés ét. Thus

net transpo_rt of qb.across an glement 6C-n £dQ ) s ot
of area during an interval of time 2

(2.25)

The net transport of ¢ per unit area and unit time (or more
simply, the flux of ¢) J, is then

Jo =f ¢C-n fdQ2 (2.26)
2

The flux J, will be a scalar or a vector depending upon the character
of ¢.

A very simple application of Eq. (2.26) can be made in the case of
the mass flux. Let ¢ = m, the molecular mass, so that J, = J,. Then,
since m is a constant,

Ju=m f C-nfdQ 2.27)
1]

The integral in Eq. (2.27) can be eliminated if we use Eqg. (2.20) to
define the average of C-n,

Im = m{nE- n) =0

This result applies just as well to any other velocity-independent
property ¢(r, t) although it is restricted to single-component sys-
tems. In this case it merely expresses the conservation of molecular
mass.

The momentum flux J..., or rate of transfer of momentum
across an area, is equal to the force that area must exert upon the
gas to sustain equilibrium,

Juow (8-cm/sec) 'cmi-sec = J,,, dynes,cm?

Thus J,.. is actually a generalized pressure or fluid stress. This
can be illustrated by looking at the way in which molecular transport
leads to the hydrostatic or normal pressure, p. When és is taken to be
an arbitrary imaginary surface element in the midst of a gas, the
gaseous regions on either side of it impart momentum to one an-
other by two means. The first of these is by ‘“‘pushing’” molecules
into the other side with a component of velocity normal to és. The
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second is by absorbing molecules with a normal velocity com-
ponent from the other side. While momentum is conserved in each
of the two sides, they exert a mutual normal pressure on one an-
other due to the continuing interchange of momentum. This pres-
sure exists at each point through the gas and is finally sustained at
the walls of the container, which receive incoming molecules and
reflect them back as outgoing molecules.

The use of Eq. (2.26) to evaluate J,,,., is not entirely straight-
forward. There are, at any point, three independent orientations
that s may assume, and in each orientation there are three in-
dependent components of momentum that can cross és. Any one
of these nine possible momentum fluxes (or stresses) can be repre-
sented by the scalar quantity p;;, where

Pij —f (muj)uif d2

or

pij = n(muu;) = pU;u; (2.28)
The velocity components u; and u; are the components in the direc-
tions of the momentum flux and normal to és, respectively. If we

take the double-subscripted quantity p;; as designating the second-
rank tensor pcc, then

Pxx Pxy P\:l I ,0?3 pluv puw
Pij = |Pyx Psy Py:| = |pVU pVZ pVW (2.29)
Ip:\' P:, P:_-\ IOW_U j’)m pw3

Figure 2.9 displays the stresses at a point on a cubical element, at
that point.

Fig. 2.9 Stresses on a Cartesian fluid element.

‘A

P;‘ ¥y

Y



42 kinetic description of dilute gases

We note that p,; designates the stress in the j direction on a
plane normal to the j direction. Common shorthand expresses the
stress tensor as

p.‘j = p 5:_,1' + Tij (2.30)

where p is the normal or hydrostatic pressure, pu.’; 7:;is the shear-
stress component (equal to zero for i = j); and é,; is the Kronecker
delta. 6, is equal to unity when / = j and zero when j # |.

DERIVATION OF
THE EQUATION OF
STATE FOR AN

2.3 IDEAL G

KINETIC MEANING
TEMPERATURE

AS

The first step in the formulation of an equation of state among
the variables p, v, and T is the explanation of the variables in terms
of microscopic behavior. This has already been done for vinasmuch
as we have shown that the specific volume, v =1/p = 1, mn.

To evaluate p we observe that 7,; is always zero in a uniform,
stationary gas. Although this is easy to see intuitively, it can be
proved once we have derived the distribution function for an ideal
gas. Then from Egs. (2.30) and (2.29),

pm 0 0
Pi=poi; =0 oV 0
0 0 e
or
3p = p(U2 4 V2 + W2) = oC2
SO
e
p=3 (2.31)
or
pv=1C? (2.31a)

Equation (2.31a) is Boyle's law if we can guess (as Daniel
Bernoulli did) that the value of C? is fixed uniquely by the tempera-
ture of the gas.

OF

Temperature is a word that we understand in two ways. Intui-
tively we perceive it as the intensity of a physical sensation. Quanti-
tatively we understand it as being defined by the magnitude of
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(dU/aS) n . or, for an ideal gas, by pv/R°.5 How then do we define T
in terms of microscopic properties? Clearly, if the microscopic and
macroscopic definitions are to be consistent, we must make this
definition in such a way that Eq. (2.31a) becomes the ideal-gas law.
Thus
— R°T  NakT

L (2 = ——— = =

e M M
Here we have introduced Boltzmann’s constant, k = 1.3805 x 10-!6
erg/°K, which can be construed as the gas constant based upon a
single molecule (i.e., k = R%/N,). Then

MC2 mcC? 2
T=3nk~ 2 % (2.32)
The kinetic energy of a molecule is thus
mC? 3
> =5 kT (2.32a)

and the x, y, and z components of energy are

2 2 " 2 "2 @33)

because, on the average, no preference should be given to the
kinetic energy in any direction.

Temperature thus has the direct physical significance of
specifying the average translational kinetic energy of ideal-gas
molecules. We shall find in our subsequent study of statistical
mechanics that a somewhat more convenient measure is the
‘temper,” 3, defined as

1
f=1= (2.34)

Two other results of some interest can be written down im-
mediately with the aid of Eq. (2.32). One is the root-mean-square
molecular speed,

V& = \3RT (2.35)
where R = R%/M is the gas constant on a unit mass basis. The well-
known sound speed, a, for an ideal gas is similar to Eq. (2.39),

a = \yRT

where v = ¢,/c,, and ¢, and ¢, are the specific heats at constant
pressure and volume, respectively. It follows that

root-mean-square speed |3’
sonic speed ;

*In the phenomenological organization of thermodynamics, T is defined in
terms of the Carnotcycle. Itis easy to prove that T=pv/(R°/M) is equivalent
to the Carnot-cycle definition.
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We find in Sec. 3.7 that v is bounded between unity and §, or
1.34 < 43/ < 1.73; therefore, the rate of propagation of a weak
disturbance in an ideal gas is limited (as we might have guessed)
to a speed that is a little below the root-mean-square molecular
speed.

Finally, we can recast the ideal-gas law, Eq. (2.5), in microscopic
terms. Combining Egs. (2.31a) and (2.32) we obtain

L _kT
p - m
Butv = 1/mn, so
p = nkT (2.36)

EXAMPLE 2.2 Two thousand years ago Julius Caesar gasped
“Ettu, Brute!”” and died. In that dying breath he released a number
of inert N> molecules which, over the millenia, have diffused uni-
formly around the world. Do you suppose we have ever breathed
any of those same molecules?

To answer the question we need to know the “‘tidal capacity’’ of
the human lungs and the total volume of air in the world. The former
is about 500 cm3 for normal breathing. The latter can be approxi-
mated (very crudely) as the volume at standard conditions of a
spherical shell 13 000 km in diameter and 10 km thick, or 5 > 1024 cm3.

We also need the number density at standard conditions. For
air this is
P 106 dynes/cm?
kT~ (1.38 x 10716 erg/°K)(298°K)

n= ~ 2.5 x 10" molecules/cm?
and for Ny it would be 79 percent of this, or 2 X 10! molecules/cm3.
Thus each breath corresponds to (2 X 101%)(500), or 1022, mole-
cules of N3, but it also corresponds to 500/5 x 1024, or 1/1022, of the
N; molecules in the world. On the average, then, we breathe one N,
molecule of Julius Caesar’s dying breath each time we inhale!

MAXWELL’S
DERIVATION OF
THE MOLECULAR-
VELOCITY
DISTRIBUTION

2.4 FUNCTION

As we have noted earlier, the distribution function provides the
link through which we obtain gross thermodynamic properties
from microscopic information. The most basic molecular distribu-
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DERIVATION

tion function is the equilibrium distribution developed by Maxwell,
and his derivation is of interest to us both historically and for its
intuitive value. It cannot be regarded as rigorously correct, how-
ever, for reasons that will be apparent in a moment.

Maxwell considered a spatially and temporally uniform sta-
tionary ideal gas. An expression for f(C) can be developed quite
easily once Maxwell's two physical assumptions have been ac-
cepted. These assumptions are that (1) the molecular velocities are
isotropic in the absence of external fields (i.e., there are no pre-
ferred directions), and (2) the distribution of molecular speeds in
any one component of velocity is independent of that in any other
component.

Although the first assumption is easy to accept, the second is
much harder to see. It says that a molecule moving very rapidly in
the x direction is no more likely to have a high y-component speed
than is one with a low x-direction speed. We can be fairly confident
that it is correct, because subsequent theoretical work and actual
measurements have verified the distribution based upon it. The
implication of the assumption, although not immediately obvious,
is that the molecules are in their most chaotic, or least organized,
state. This idea is explored further in chapter 3.

The probability of finding a molecule in a given element of
velocity space, 8¢, is then

C[(U, V, W), (U + 38U, V+3V, W +sW)) =

£(C) 52
S Q)

and the probabilities of finding a molecule in each of the com-
ponent elements, éU, 6V, and éW, are

®[U, U + 5U) = %Umfm f(C) dV dW}&U = F(U)sU

®V,V+8V)=G\V)sV (2.38)
and
@W, W + W) = HW) sW

The second assumption says that the component probabilities
given by Eq. (2.38) are independent of one another. Therefore, the
probability given by Eq. (2.37) can be expressed as the product of
the probabilities of the three independent events, [U, U + §U)
[V, V4 8V), and [W, W + sW):

Eg—@ = F(U)G(V)H(W)sU &V oW (2.39)

6The Scientific Papers of James Clark Maxwell, Dover Publications, Inc., New
York, 1952, vol. 2, pp. 43-47.
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From the first assumption, that of isotropic behavior, we know that
F, G, and H should all be the same function. Thus Eq. (2.39) becomes

f(C) = nF(U)F(V)F(W)

The next problem is that of determining what kind of function
of C can be decomposed into a product of functions of components
of C. It will help us to note that

C=CC=U2+V24+W2 =2

The choice F(U) = F(V) = F(W) = a exp (bU?) gives the appropri-
ate form,

f(C) = adnet U+ +hw (2.40)
If this function satisfies the two obvious constraints,
n f f(C) d2 (2.41)
Q
and
T= ;’—; C = %} ) C2 £(C) d© (2.42)

it should be correct.

Substitution of Eq. (2.40) into Egs. (2.41) and (2.42) and integra-
tion over all three component velocities gives two equations in a
and b. Solving these we obtain

m m
a=,/— and b= —-—
\'2ﬂkT 2kT
so that
m \32 1 mC2
f(C) = n(m) exp (_R_T > ) (2.43)

This is the well-known Maxwell molecular-velocity distribution func-
tion. We note that it is a special case of the normal or Gaussian dis-
tribution function, Eq. (2.13).

The component distributions F(U), F(V), and F(W) can also be
written down immediately as

F(U) = (%) “exp (— '—;;Lf) (2.44)
F = (532) " oo (-12) (2.442)

and

1/2
FW) = (ﬁ—f) exp (J;‘:f) (2.44b)
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Because the velocity components are normally distributed
about zero, the most probable component is zero, and the most
probable velocity is zero as well. This does not really imply that we
should expect to find any stationary particles in a gas, however.
The number of particles in a vanishingly small range of velocity
about zero is, in fact, zero:

m \3¥2 mC2
i Q = lim it - T . 2 &i =
len (DL (I.‘I--‘o J:n(erkT) exp ( ZkT)] CREINTOR0 290 C =10

The most probable speed, on the other hand, is not zero
— a fact that might seem odd at first glance. The reason is that
velocity requires far more specification than speed. While
C= yU? + V2 4+ W2 for any number of choices of U, V, and W,
C = iU + jV + kW for one unique set of U, V, and W. We find in
chapter 5 that the values which U, V, and W can assume are uni-
formly distributed in velocity space, in accordance with the dictates
of quantum mechanics. Thus the larger Cis, the more possible sets
of velocity components will correspond to it. Thus a given speed is
far more likely than any of its corresponding velocities, with the
single exception of C = 0, for which U, V, and W have to be zero.

The speed distribution f(C) can be determined by regarding f(C)
as f(C, 4, ¢) and integrating out the angular dependence:

#{C, C 4+ 8C) = %f(C) oC = %[f/- f(C, 8, $)C2 sin 6 df dq{vJ 6oC
0J @

or

m 32 T2 2
@[C, C +6C) = (m) 8[[ f C2
6-0 J ¢=0

mC2\ |
exp (__Zk_T) sin 6 df d¢;:‘ 6C (2.45)
The factor of eight arises in Eq. (2.45) because the integration is
being made over only one-eighth of a sphere. The result is the Max-
well speed distribution,

m 3i2 mc2
©-[w(z) Joen(-57)  ew

The most probable speed is clearly not zero; in fact, the distribution
function vanishes as C goes to zero.

The velocity and speed distributions [Eqgs. (2.43) and (2.46)] have
both been plotted against the nondimensional speed in Fig. 2.10.

EXPERIMENTAL VER!FICATION
OF MAXWELL'S DISTRIBUTION

A variety of experimental verifications of the Maxwell velocity
distribution law have been made. The speed distribution was
measured in the early 1930s using the method illustrated in Fig. 2.11.
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Fig. 2.10 Maxwell velocity and speed distributions.

1.0
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32
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Fig. 2.11 Typical apparatus for measuring a molecular-speed distribution.

Gas molecules are deposited at a
position on a glass plate that is
governed by their speed as they
enter the slit on the drum

A unidirectional beam of
hot gas molecules enters
slit on rotating drum

Oven maintains a gas
(usually of bismuth) at
a uniform high temper-
ature

Collimating slit

Region outside of oven is
maintained in vacuum

Bismuth vapor was heated to a high-temperature equilibrium con-
dition and a beam of escaping molecules was collimated to facilitate
a measurement of the speed Cinstead of a velocity component. The
molecular beam entered a slit in a rotating drum each time it inter-
cepted the beam. The molecules passed across the inside of the
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moving drum at differing speeds and distributed themselves
accordingly upon a glass surface on the inside of the drum. The
number of molecules arriving at any position was then determined
by removing the glass surface and measuring the darkening that
had resulted with a recording microphotometer.

Improved molecular-beam devices, similar to the one described
above, have subsequently been developed and more refined
measurements have been made. In all cases the Maxwell distribu-
tion was found to represent the experimental data extremely well.

An interesting ‘‘mathematical experiment’ has been carried
out? to show the existence of the Maxwell velocity distribution in the
equilibrium state. With the aid of a computer the motions of 100
particles in a cubic box were treated mathematically by solving the
equations of motion with arbitrarily prescribed initial positions and
velocities of all particles. After a rather modest number of collisions,
the particles approached an equilibrium state and it was found that
the velocities of particles were distributed according to the Maxwell
velocity distribution.

MAXWELL MOMENTUM
DISTRIBUTION

In mechanics it has been established that the momentum is a
more fundamental parameter than the velocity, although they are
linearly related (p = mc), and the velocity is a quantity that is easy
to understand. Thus the Maxwell distribution of vector momentum
f.(p) can be obtained from the Maxwell velocity distribution f.(c) in
the following way:

1 1./p\dd 1
b A0y = G==fl=)—==F,
w(c, ¢ + dQ) ; f.(c) dQ - f;( ) - f.(p) dP

Therefore,

B.P) = 5 16)

and substitution of this result in Eq. (2.43) gives the momentum
distribution f,(p) for an equilibrium gas. Dropping the unnecessary
subscript m, we have

P2
= —3/2 = 3
f(p) = n(2rmkT) exp( ZmRT) (2.47)
The Maxwell distribution for the magnitude of momentum can
likewise be obtained from either Eqs. (2.43) or (2.46). It is
p:

f(p) = n(dxp2)rmkT) =32 exp (_zm—k?) (2.47a)

7See B. J. Alder and T. E. Wainwright, J. Chem. Phys. 33, 1439 (1960), and
references cited therein.
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The results of averages based on the velocity and the momentum
distributions are, of course, identical. For example, the molecular
mean speed obtained from the speed distribution is

E=4 (i . .\»C}ex (_m_c2 dc_(Bk_T i
= N\2mkT) |, P\"27) %~ \om

while the momentum distribution gives

= _ (P _ _Awmi2 [ (#...Pz) _(g_’fI v
€= (m) - (2rm3kT)33fU Prexp\ = omikr) P = om

(2.48)

EXAMPLE 2.3 Why does the earth keep an atmosphere while the
moon does not?

The answer to this question can be obtained without working to
any great precision. Therefore, let us consider the temperature of
an atmosphere on either planet to be 300°K and consider an air
atmosphere. The root-mean-square speed in either case would be

o _ [T _ [3(1.3305 X 10-16)(300)
e = [ = 4.8 X 1023

:|E o 50,900 cm/ sec

m

But the velocity required to escape the earth’s gravitational field is
1.1 x 10° cm, sec, or 22 X C,,.. Using the result of Problem 2.13 and
taking C,,. ~ C,, we find that the fraction of particles with speedsin
excess of the escape velocity is

2 |'r§ 3 2 -126
= 2 @ exp [ £22)7) = 30e

vr N2
and this is an incomprehensibly small number. On the moon, how-
ever, the escape velocity is much less — about 2 < 10° cm, sec, or
4 % C,..—and the fraction of molecules with sufficiently high
velocity to escape is

—2_- |'i§ — 2] ~ 10
Az e -1 ~2 X 10

There would therefore be a small but steady attrition of the
moon's atmosphere to outer space, if it had an atmosphere. It
would continue to lose about 1 five-billionth of its atmosphere in the
time required for the distribution function to readjust to the loss
of particles.

FLUX OF
2.5 MOLECULES

The flux of molecules in one direction, at a pointin a gas, is given
by Eq. (2.26) in the form

J.-l.o'.m-u:m = ] ¢ cn f(C) df? (2.49)



2.5 Flux of Molecules 51

In this case ¢ will be unity and the integration will be made over all
angles on one side of the plane only. Accordingly, we can introduce
c-n = c cos # and write

I [ f '[ f(c)c3 sin 6 cos 6 d¢ di dc
JeoJ o0 Je-0
- f  CM(c) de (2.50)
e=0)

Had the integration been over all space (0 < 0 < =) the net flux, at
least for a uniform gas, would have been zero. The result above
gives the flux from one side only.

Equation (2.50) might seem to imply that J, siccue €@n be evalu-
ated only when the distribution function for the gas is known.
Actually it is possible to circumvent the need for f(¢). We can write

ne = ’3/ cf(c) do :.f {[ f(c)c? sin 6 db de dc
n a0 o Jo Jo

- 4;:[0' c¥f(c) de (2.51)
Substitution of Eq. (2.51) into (2.50) then gives
dusecsn = @:52)
or, if we use Eq. (2.48),
Jolecules = n(zfr—]:n)! ‘ (2.53)

Equation (2.52) is not restricted to Maxwellian gases, but Eq.
(2.53), of course, is. If ¢ is replaced by Cin Eq. (2.52), the result will
give the flux at a point that is moving with the gas as a whole. Equa-
tion (2.53) applies only to points at rest with respect to cy.

Thus far we have made no attempt to relate fluxes to gradients
of any kind, and, strictly speaking, Eqgs. (2.50), (2.52), and (2.53) are
only applicable when itis reasonable to talk about an equilibrium dis-
tribution function, f(c). For example, only a very small hole could
exist in a pressurized vessel without causing gross changes in the
local distribution function which would invalidate these equations.

The subject of molecule fluxes receives more detailed con-
sideration when we take up the kinetic theory of gases. It will be-
come clear that such a hole would have to be smaller than the mean
free path / (or average distance traveled by molecules between
collisions) if a gross velocity distribution ¢y(r) were not to be induced
in its vicinity.

EXAMPLE 2.4 How do the mass fluxes of an ideal gas from a tank
differ between the case of a large hole and that of a very small hole?
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If the hole is much larger than the mean free path, a gross
motion of the gas will be induced and Eq. (2.53) is not valid. Actually,
kinetic-theory methods for dealing with the situation do exist and
will be of interest to usin chapter 12. However, the very elementary
Bernoulli equation applies here. It gives

I
. o | Ap
Miarge = p ,12(_)

where the orifice coefficients have been assumed approximately
equal to unity. If the mean free pathis larger than the hole we must
use Eq. (2.53),

,‘(Tm)“2

rhelnmll = mJlnﬂIuculus = n(
27

The use of Eq. (2.52) presupposes a zero back pressure, in that
no returning component of flow is considered. Thus to make proper

comparison we must replace Ap with p, or nkT, in the my,... expres-
sion. Then if we note that p = nm,

r-;'-'nu;;.ll
Actually the advantage of the large hole is not really this great,
because if there is no back pressure the flow will be sonic and

= 2\r~3.54

; — IvkNAT
Miarge = P\'YRT = p\,'ry M\

S0 a more appropriate ratio would be

Miarge

m:uu:d] - \2—?1-; -\2'5 to 3_23

where we have used the fact that 1.0 < y < 3.

In either case the mass motion of fluid through an aperture is
clearly a much more effective means of gas removal than the in-
dividual escape of particles represented by Eqgs. (2.52) and (2.53).

We now leave considerations that belong in the domain of
kinetic theory until chapters 11 and 12. Chapters 3 through 10 deal
specifically with the more general subject of statistical mechanics
and those aspects of quantum mechanics that are needed to dis-
cuss statistical mechanics.

Problems 2.1 Show that for atwo-dimensional gas, p = pC2 2 = K, where p

is the mass per unit area and K is the mean translational kinetic
energy per unit area.
2.2 Suppose the speed distribution function f(c) takes the form
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given in Example 2.1. Evaluate the mean-square speed and the
most probable speed. Can you compute {c)? What is its value?

2.3 How many molecular collisions are made per second on
each square centimeter of a surface exposed to air at a pressure of
1 atm and at 300°K? The mean molecular weight of air is 29.

2.4 A closed vessel contains liquid water in equilibrium with its
vapor at 100°C and 1 atm. One gram of water vapor at this tempera-
ture and pressure occupies a volume of 1670 cm?. The heat of
vaporization at this temperature is 2250 Joules/g.

(a) How many molecules are there per cubic centimeter of
vapor?

(b) How many vapor molecules strike each square centi-
meter of liquid surface per second?

(c) If each molecule that strikes the surface condenses,
how many evaporate from each square centimeter per
second?

(d) Compare the mean kinetic energy of a vapor molecule
with the energy required to transfer one molecule from
the liquid to the vapor phase.

2.5 A pressure vessel contains V, cm? of an ideal gas initially at
pressure p,. The vessel, which is located in a vacuum chamber of
volume V. has a very small hole (a leak) of known area in its side.
Derive expressions for the pressure in the vessel and in the cham-
ber as a function of time after the leak occurs. Assume that there is
enough heat transfer to keep the temperatures in both containers
at the same uniform value.

2.6 Two chambers of the same gas at the same temperature,
but at different pressures, are connected through a membrane
with very small holes. Determine the net molecular flow rate per
unit area of the holes. (This is the phenomenon of effusion.)

2.7 Plot, to scale, the motion of the simple harmonic oscillator,
shown in Fig. 2.12, in phase space, (a) for ¢, = 0 Ib;/(ft/sec) and (b)
for ¢; = v/8 Ibs/(ft/sec). What would happen to the phase-space
trajectories if time appeared explicitly in the equation of motion —
if, for example, there were a time-dependent forcing function?

2.8 Prove that division by N normalizes the normal distribution
function.

2.9 Avertical cylinder is fitted with a piston of mass M whichis a
distance h above the cylinder head (the bottom of the cylinder) and
which can follow the influence of gravity without friction. The cyl-
inder contains a sphere of mass m << M, which moves only up and
down with a speed c. The sphere is elastically reflected by the
piston and the cylinder head. The influence of gravity upon the
sphere is negligible.
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Fig. 2.12 Damped, simple harmonic oscillator.

The spring constant, K = 1 Ibg/ft

M The mass, M =32.21b,

The damping factor, ¢y = ¢ Ibg/(ft/sec)

77z

(a) Establish the condition of equilibrium for the piston and
compare it with the ideal-gas law. Ignore the size of the
sphere. Comment upon your result in terms of the
principle of equipartition of energy (see Sec. 3.7).

(b) If the piston is withdrawn at a velocity V,, where V, < ¢,
compare the loss of energy of the sphere with the work
of an equivalent gas (6W = pdV).

2.10 A monatomic gas is expanded from a stagnation condition
defined by Ty, through a converging-diverging nozzle, to the maxi-
mum speed attainable in such a nozzle. Compare this speed with
the root-mean-square speed at T,. Under what condition would
these speeds be equal? What would be the physical meaning of this
condition?

2.11 On the basis of the Maxwell distribution show that the most
probable speed C, is \2kT m; the root-mean-square speed is
\3kT/m; and the mean speed is \8kT, zm. Show that

Co:C:VC:12: \."!?__ :3:31:1.13:1.22

2.12 Obtain U? from the Maxwell distribution for the U-com-
ponent velocity. How could you have obtained this result far more
simply?

2.13 Show that if the fraction of molecules with speeds between
C and C-+4C is written W(C)4C, then the probability density is

4 2 3
¥(C) = w = C2exp (—a?)

m N
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where « = C C, and C,, is the most probable speed. Prove that the
fraction of the molecules having speeds in excess of Cis

1+ 2—(3. exp (—a?) — erf (a)
\7T

Finally, show that when « > 1.5 this fraction is well approximated by

2 |mec? (_m_CE)
e V2T TP\ 2T

2.14 Derive the expression for f(E), where E is the translational
energy of a particle mC2 2. Use your result to evaluate E in terms of
temperature. Fission neutrons have an average energy of 2(10)° eV.
What is their ““‘temperature’?

2.15 One thousand H> molecules are in thermal equilibrium at
0°C. With the aid of the result from Problem 2.13, choose 100-m, sec
increments of velocity between 0 and 3000 m,'sec, and plotthe num-
ber of molecules in each increment. Show C,, C, and C.,.. on your
curve. (You had best use a digital computer for this problem.)

2.16 Complete the missing steps in the derivation of Eq. (2.43),
Maxwell's velocity distribution.

2.17 Obtain Eq. (2.53) directly, using Eq. (2.50).

2.18 Show whether or not there can be shear stressin a Max-
wellian gas, using Eq. (2.28). Can there be viscosity in a Maxwellian
gas? Discuss.

2.19 Derive the general expression for J, ... for a two-dimen-
sional gas. Your result should not be restricted to a Maxwellian gas.

2.20 A particle moves away from a point x = 0in a straightline.
Itis influenced by a force field such that F = —a, x2. Plot the motion
of the particle in phase space. Assume that it has insufficient
energy to escape from x = 0.

2.21 Compute the maximum possible heat flux that could ever
occur in a condensation process, by assuming that all molecules of
saturated vapor impinging on a surface were to condense on that
surface. What would this heat flux be for steam at atmospheric
pressure?






classical statistics of
in_dependent particles

The preceding developments of the ideal-gas law and other rela-
tionships began in fairly concrete descriptions of molecular be-
havior. These developments belong in that area of statistical
thermodynamics which is generally called kinetic theory. Now we
embark upon a more abstract strategy for determining gross
effects of microscopic behavior. The methods are those of ele-
mentary statistical mechanics and we find that they lead to results
based upon surprisingly little information about molecular
behavior.

Consideration is restricted to particles that are independentin
the sense that the energy of each is independent of the energy of
the others.! Actually energy can be exchanged in the brief instant of
collision. However, we find in chapter 12 that collisions cease to in-
fluence the distribution of energy at equilibrium. Our statistical
method therefore envisions an equilibrium array of particles with-
out making any reference to collisions.

IThis independence is not complete. The total energy of an equilibrium
group of particles is constrained to be a value that can, for all practical pur-
poses, be considered constant.

57
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3.1

classical statistics of independent particles

MACROSTATIES AND
MICROSTATES

The starting point of our statistical-mechanical strategy is the
idea of macrostates and microstates. The following example serves
to illustrate the meaning of this idea. Imagine for a moment that a
full salt shaker is attached at its open end to an open, full pepper
shaker. Together they constitute a tube with pure salt in one half
and pure pepper in the other. Now imagine that they are shaken;
the mixture will assume an intermediate gray. Shake them 1000
times; the original black-and-white configuration will not recur, nor
would one (on the basis of his experience) expect it to. Nevertheless,
we know that it would be possible for it to recur, because it corre-
sponds with certain of the possible rearrangements of particles.

This paradoxical situation holds a vital key to the behavior of
molecular aggregates. In the salt and pepper shakers there are
millions upon millions of rearrangements that will appear as a uni-
form gray to our undiscerning eyes. There are far fewer, however,
that will appear black and white.

We give the name microstates to the detailed configurations, or
rearrangements, that can exist on the microscopic level. Macro-
states are those manifestations of the microstates that we can
distinguish from one another on the gross level. In the salt-and-
pepper-shaker example, each of the vast number of arrangements
of salt and pepper particles corresponding with the macrostate
‘‘gray’’ was a different microstate.

The thing that we tend to accept intuitively about the salt-and-
pepper example is that all the microstates are equally likely. Thus
we cannot hope to regain the rare black-white configuration in a rea-
sonable number of shakes. Similarly, the marble-sampling illustra-
tion employed in Sec. 2.2 showed that there were 252 times as many
ways of drawing the most probable sample of 10 marbles (i.e., 5 red
and 5 black) than there were ways of drawing 10 red marbles. If the
sample were increased to 100 marbles, 50 red and 50 black marbles
would then be 6.65 x 1023 times as likely to occur as 100 red marbles
and about 3000 times more likely than even a 30: 70 mixture.

Itis therefore clear that there is at play a phenomenon that has
been called “'the tyranny of large numbers."’ Deviations from those
microstates that correspond with the most probable macrostate
become “impossible’” when sample sizes are at all large.

The task that we undertake here is that of deriving a general
distribution function that will include the Maxwell distribution as a
special case. We accomplish this by determining the number of
molecular microstates corresponding with each macrostate and
then finding how the molecules are distributed in phase space
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when this number is maximized. The general result is named the
Boltzmann distribution (or the Maxwell-Boltzmann distribution)
after Ludwig Boltzmann, who formulated it in 1871.2

PRINCIPLE OF EQUAL A
PRIORI PROBABILITIES

The fundamental assumption in statistical mechanics is the
principle of equal a priori probabilities. In slightly restrictive form it
says: All microstates of motion occur with equal frequency.

The principle implies that all arrangements of a system of mole-
cules in phase space are equally probable — a fact that we have to
use in writing the probability of a given macrostate. There is no
definite information or logical reason to favor one particular ar-
rangement, so this principle is indeed the only alternative. The
validity of this principle, however, can only be supported by the
a posteriori success of statistical mechanics in predicting the
macroscopic behavior of thermodynamic systems.

The principle of equal a priori probabilities includes as a special
case the principle of molecular chaos. The latter principle says that
there is no order in molecular motion, and it generally takes the
form of Maxwell's second assumption (Sec. 2.4). Since three com-
ponents of velocity have to be specified independently to identify
the microstate of a particle, Maxwell's assumption clearly follows
the principle of equal a priori probabilities.

WAYS OF
ARRANGING
3.2 OBJLCTS

Following Davidson® we digress from the problem at hand to
enumerate the solutions of five combinational problems that we
must subsequently use in writing the probabilities of macrostates.
Some of these results are not used until chapter 6, but it is con-
venient and easy to develop them now along with the results that
we need immediately.

PROBLEM 1. How many ways can we arrange N distinguishable
objects? Let us suppose that, for example, we wish to arrange N
books in various ways on a shelf. When the first book is placed in
any one of N ways there remain only N — 1 ways of placing the
second. There are then N(N — 1) ways of placing the first two, and,

L. Boltzmann, Lectures on Gas Theory, English translation by S. G. Brush,
University of California Press, Berkeley, Calif., 1964, chap. IV.

3N. Davidson, Statistical Mechanics, McGraw-Hill, Inc., New York, 1962
Sec. 5.2.
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when they are in position, N — 2 ways of placing the third. Thus
there are

N! ways of arranging N distinguishable objects

PROBLEM 2. How many ways can we put N distinguishable objects
into r distinguishable boxes (without regard to order within the boxes)
such that there are N, objects in the first box, N; in the second, . . . .
and N, in the rth box? Once more we have N books but now there are
r shelves, and the order within any shelf is unimportant. There are
again a total of N! arrangements of books, but the arrangements
that result from changing books on a given shelf must be divided
out, because they are not relevant. We must divide N! by Ni!, N,!,

N o0 N, and N,! to account for the meaningless re-
arrangements. There are thus
N! . e : .
- ways of putting Ni, Ny, .. ., N, distinguishable objects into

II N T distinguishable boxes (without regard to order)

i=1

PROBLEM 3. How many ways can we select N distinguishable objects
from a set of g distinguishable objects? This is nothing more than
putting N books on one of two shelves and g — N books on the
other. The distinguishable ‘‘books are simply divided in two
groups within which there is no concern for order. The answer to
this problem can be written immediately, as a special case of
Problem 2, in the form

g! . e .
—_— N
NI (g — N)| ways of selecting N distinguishable objects from g

distinguishable objects

PROBLEM 4. How many ways can we put N indistinguishable objects
into g distinguishable boxes, if there is no limit on the number of ob-
jects in any box? This is the first problem in which we must cope with
the indistinguishability of objects. We might liken it to the problem
of placing N copies of the same book among g shelves. The problem
can be solved very simply if we first reduce it to a more abstract
form. Let us designate the books with identical dots, and the sepa-
rators between shelves with slashes:

.,f"; ----- l.f"l./....,.f".-.

There are N dots and g — 1slashes, denoting a total of g boxes. The
“boxes’ are distinguishable by virtue of their location, and the
apparent indistinguishability of the slashes is irrelevant to the
problem. The problem can now be asked in the form: How many
ways can we arrange the N + (g — 1) distinguishable locations which
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contain dots and slashes in the sketch above?, or, more simply,
How many ways can we select N distinguishable dot locations and
g — 1 distinguishable slash locations from N + (g — 1) dot and
slash locations? The problem is now reduced to Problem 3 and the
answer is

(N+g—1! . ST TAPTI—— . .
“Ni(g— 1) ways of putting N indistinguishable objects into g
'(g— D! gistinguishable boxes

PROBLEM 5. How many ways can we put N distinguishable objects
into g distinguishable boxes? Each of N different books can be puton
any of g shelves. The first book can be placed in g ways, the second
book can also be placed in g ways, and so on. There are thus

gV ways that N distinguishable objects can be placed in
g distinguishable boxes

ON THE
SPECIFICATION OF
MOLECULAR

3.3 MICROSTATES

The meaningful specification of a finite array of microstates can
only be made after means have been devised for breaking the
energy of particles into finite increments. Quantum-mechanical
considerations will subsequently provide the appropriate means
for doing this. Until we have taken the trouble to develop these
means in chapters 4 and 6, it suffices to subdivide energy* in the
following arbitrary way.

An array of N particles has a total energy U. The energies of the
individual particles are assumed to take on the discrete values
€0, €1y « - -, €, - - . - The number of particles with energy e is No, the
number with ¢ is Ny, and so on. Thus

S N.=N 3.1)
i=0
and
3 N = U 3.2)
i=0

The word ‘‘macrostate’’ can now be applied to the gross (or observ-
able) state that corresponds with a given set of numerical values
Ni, N2, ..., Ni ... ,and thus satisfies the two constraints. The

4The salt-and-pepper example (Sec. 3.1) dealt with the arrangement in space
of particles, as identified by color. Now we talk about the arrangement in
energy of identifiable particles.
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number of microstates for each macrostate will be equal to the
number of ways in which we can choose these N,’s from the N
particles.

We wish to take the view that particles can be distinguished
from one another when we count the microstates of the system that
comprises them, But to make such a statement requires that we be
exceedingly careful in understanding what the claim means. If two
particles are truly indistinguishable, the operation of interchanging
them is meaningless. When we have finished interchanging two in-
distinguishable particles we have, in fact, done nothing at all.

To our classical way of thinking the last sentence might seem
like nonsense. The reason is that indistinguishability is an idea that
really makes sense only within the framework of a quantum descrip-
tion of particles.® In the classical view we feel that given a large
enough microscope we could always devise some means for dis-
tinguishing, or identifying, particles.

The number of microstates, W, corresponding to a given
macrostate can be written down immediately. It is given by the
answer to Problem 2 in Sec. 3.2, which tells the number of
ways in which we can divide N distinguishable objects into groups of
Ni, N2y ... Ny oL,

W = N“I_U il (3.3)

This W is an enormous number —a number comparable with
N4\ If, on the other hand, the particles were to be viewed as in-
distinguishable, it is clear that no rearrangements within a macro-
state would be meaningful and W would simply be unity. The statisti-
cal description that we now formulate is self-consistent with a
classical view, It will also bear a strong resemblance to the revised
quantum-statistical description that is developed in chapter 6.

THERMODYNAMIC
PROBABILITY

The probability of encountering any macrostate, @(macro-
state), and the probability of encountering any microstate, ¢*(micro-
state), can be written in accordance with the principle of equal a
priori probabilities as

number of microstates corresponding

) to the given macrostate
b} a e e ———— — e — o
(F(macrostate) total number of microstates G

and

#(microstate) = - L (3.4a)

total number of microstates

SThis idea is discussed by D. ter Haar in Elementary Statistical Mechanics,
Holt, Rinehart and Winston, Inc., New York, 1960, p. 72.
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respectively. The number of microstates consistent with a given
macrostate W is given the name thermodynamic probability. It is not
a true probability in that its sum over all macrostates is not equal to
unity. Instead

#(macrostate)
(P(microstate)

= (3.9)
Another name for W, sometimes used in place of the thermo-
dynamic probability, is the disorder number.

Since  (microstate) is fixed in any system, W is proportional to
 (macrostate). The fact that it is vastly bigger than the true proba-
bility will not affect the type of computation we now wish to make.

EXAMPLE 3.1 A total of 40 people in a small precinct vote for two
candidates — 16 for the Tory and 24 for the Whig. Evaluate W,
( (macrostate), and @ (microstate) for the vote distribution.

We must first recognize that what really interests us is the gross
outcome and that the individual action of voters is to be viewed as
microscopic detail that we shall ignore. Thus the distribution, 24
Whigs to 16 Torys, is a macrostate whose thermodynamic proba-
bility is given in Problem 3, Sec. 3.2, as

40!

S b 10
W = eiom = 6:285 X (10)

But the total number of ways in which 40 individuals can cast their
votes in either of two ways is given by the answer to Problem § as
(2)% = 1.0995 x (10)'2

Thus
@ (microstate) = (2) 4° = 9.091 X (10)~'?
and
 (macrostate) = & (microstate) X W = 0.0571

Thus there are an immense number of ways of achieving the
given macrostate and a negligible probability of guessing how each
of the 40 voters will decide. However, the specific defeat suffered
by the Tories was not unreasonably surprising.

MAXWELL-
BOLTZMANN
3.5 STATISTICS
The equilibrium distribution of the N,'s will be assumed to be
the one for which the thermodynamic probability is maximum. The
fact that the maximum W is overwhelmingly greater than W’s corre-
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sponding to macrostates that differ appreciably from the equilibrium
macrostate is subject to strictly mathematical proof. It is shown to
be true for large ensembles in more detailed treatments of statisti-
cal mechanics. We accept the fact in the present discussion, on the
basis of its intuitive appeal.

It is simpler to maximize In W than to maximize W itself. Thus
our problem will be that of maximizing In W as given by Eq. (3.3),

InW=1InN'— > InN,;! (3.6)
i=0

subject to the two constraints given in Sec. 3.3,

SN =N and D &N, =U

i=0 i=0
This maximization is accomplished using the method of Lagrangian
multipliers and Stirling’'s approximation to the logarithm of large
factorials.¢ The method of Lagrangian multipliers is a technique for
picking the values of the independent variables (in this case, the
N,'s) that maximize a function of those variables (in this case, W).

The introduction of Stirling’s approximation in Eq. (3.6) and
differentiation of the result gives

dinW=—=> (InN)dN; =0 3.7)
i=0
The constraints (3.1) and (3.2) yield
ad dN;=0 and B> e&dN,=0 (3.8)
i=0 i=0

where « and § are undetermined multipliers. The subtraction of
Eq. (3.7) from the sum of Eqgs. (3.8) gives

é(ln Ni + a + Be)dN; = 0 (3.9)

Since the coefficients of the dN,'s must vanish identically,

INN; 4+ o+ e =0

or

N; = g ag 8 (3.10)

6Stirling's approximation, which says that for large n, In(n')~nlnn — n,is
developed in Appendix A. The method of Lagrangian multipliers is described
in Appendix B.
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The first constraint (3.1) and Eq. (3.10) can be combined to show

that?
N'_ e—a —ei
N~ = (3.11)
Z e--ae—.ﬁ‘ei
i=0
But « does not contain the summation index, i; thus
Ni e—Su‘
N-= (3.12)
Z e—ﬂﬁ
=0

which is the Boltzmann or Maxwell-Boltzmann distribution. The
problem of evaluating « has conveniently been avoided by consider-
ing the proportion of particles at the ith energy level instead of the
absolute number. We can thus anticipate that the multiplier a
(which arises from the constraint of constant N) should be related
in some fashion to the absolute number of particles present.’ The
constant 3, on the other hand, is related in some way to the general
level of particle energy. To evaluate 3 we must first propose a micro-
scopic meaning for entropy.

MICROSCOPIC MEANING OF
ENTROPY

Figure 3.1 shows an isolated system composed in turn of two
subsystems, (1) and (2). The entire system is in equilibrium; hence
the entropy function has a unique value. The maximum thermo-

Fig. 3.1 Two subsystems of an isolated system.

YL L
(1 (2)

ANNN

e

7The particular set of N.'s for which W is maximum should be given a special
symbol — say N*;. We do not wish to complicate our notation in this way.
Henceforth N; is simply used to designate this particular value.

81t is shown in Sec. 6.1 that the multiplier, «, is related to the chemical po-
tential, u, the conjugate of the mole number, which is, in turn, the absolute
number of particles divided by Avogadro's number. The exact relation is
a= —u/kT.
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dynamic probability is also uniquely determined for the given sys:
tem by the fact that it is in equilibrium. There should, therefore, be
a functional relationship between S and W such as

S =f(W) and S: = (W) (3.13)

where f denotes the same function in either case.
The entropy function is additive, however. Therefore, the
entropy, S, of the combined system is

S=8§+8% (3.14)

The thermodynamic probabilities of these independent systems
are, on the other hand, multiplicative:

W= ww, (3.15)

To satisfy Egs. (3.13), (3.14), and (3.15), the entropy function must
take the form

S = f(WiW2) = f(W) + f(W2) (3.16)

We must define S so that it will fit the narrow confines of Eq. (3.16).
The form of the function, f, that will satisfy Eq. (3.16) is

S(W)=kinW (3.17)

The multiplying constant is given the symbol k because it is possible
to identify it with Boltzmann’s constant later in this section. It is
also shown that the entropy so defined is wholly consistent with
macroscopic entropy.

Equation (3.17) lends insight to the meaning of entropy. Imag-
ine, for example, an isolated system in equilibrium, with certain
internal constraints. These might include adiabatic, rigid, and, or
impermeable walls separating regions of differing temperature,
pressure, and, or chemical potential. When the constraints are re-
moved, spontaneous processes take the system to a new equi-
librium state. The entropy of the new state exceeds that of the old
one in accordance with either the second law of thermodynamics or
the second and third thermodynamic postulates.

We also know that when the constraints are removed, if there is
a more probable equilibrium state among the subsystems than
formerly existed, the system will tend toward it. Equation (3.17)
expresses the resulting maximization of entropy, not as a physical
principle, but as a consequence of the laws of probability.

The salt-and-pepper-shaker example used in Sec. 3.1 can now
be viewed in another light. Prior to mixing, the pure substances
comprised subsystems of an equilibrium system. The system in-
cluded one constraint — an impermeable wall — which was sub-
sequently removed. Agitation of the system upset the metastable
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equilibrium of the unconstrained separate states and mixing
occurred. As a consequence there was a finite increase of entropy,
resulting from mixing alone. This phenomenon is also familiar in
macroscopic thermodynamics.

Consider an isothermal, isobaric system consisting of two sub-
systems separated by an impermeable wall — the system shown in
Fig. 3.1, for example. One subsystem consists of a mole of an ideal
gas, No. 1; the other consists of a mole of another ideal gas, No. 2.
The membrane is removed and the gases are allowed to mix. The
change in molar entropy is well known [see, e.g., Eq. (7.66a)], and
for this case it is

AS = —RY1Inx; + 11In xa]

where the x;'s are the mole fractions in the mixture. In this case
X| = X2 =14, S0

AS=R'In4 (3.18)

This increase of entropy results solely from mixing the mole-
cules and has meaning only as long as we can propose operations
by which the molecules can be distinguished from one another. An
entropy of mixing would thus arise if we mixed two very similar
isotopes of oxygen but not if we mixed two samples of pure oxygen.?

An extremely simple microscopic argument also results in Eq.
(3.18): When the wall is removed, there are exactly twice as many
cells that each particle can occupy in position space. W, .. is accord-
ingly doubled for each particle present and Eq. (3.17) gives,

Wr‘ W[; Wg_;)
= —_ =
AS k'ﬂw = kln (W[‘- —ng-

or, in this case,
AS = kIn[(2)¥3(2)¥4] = (Na + NadkIn2
so
AS=R0In4 (3.18)

This result vindicates the selection of k as the multiplying
constant in the entropy function, even though it is a restrictive ex-
ample. It shows that if the calculated entropy change is the same
whether it is based upon macroscopic or microscopic arguments —
and it must be the same — then k must indeed be Boltzmann’'s
constant.

9The apparent discontinuity in the entropy function as gases approach in-
distinguishability was noted by Gibbs and is cailed Gibbs's paradox. We
return to this point in chapter 7.
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PARTITION FUNCTION

Equation (3.12) can be rewritten as

e—ﬂu‘
Z

% (3.12a)

where
Z= ) e#s partition function (3.19)
i=0

The partition function, Z, is so named because it expresses the
partition or distribution of energies over the various energy levels.
The German word for Z is Zustandssumme, the sum of states of the
system, and is equally descriptive of the meaning of Z. The great
value of the partition function will be found to lie in its role as a
generating function for the macroscopic thermodynamic properties.

The partition function is a thermodynamic property itself in the
sense thatitis a unique function of the state of the gas. It depends
upon T through 8, and it depends upon V through ¢;, because the
translational energy of particles rises or drops when the system is
compressed or expanded adiabatically.!?

The entropy for a system of distinguishable particles can be
expressed in terms of the partition function with the help of the
thermodynamic probability. Thus

S=kInW=k(NInN- ZN,lnN,-)

i=0

The substitution of Egs. (3.12) and (3.19) yields

- —e
S=kNINN— k> Nln (N ‘-‘Z)

i=0
= kNInN-kZ{NJInN-i-kEN,JnZ kD NBe
i=0 i=0 i={

=kNInN—kNInN + kNIn Z + kpU

or

S=kNInZ+ ksU (3.20)

Equation (3.20) will serve as the basis for expressing the re-
maining macroscopic properties in terms of Z, k, N, and T. Beta is

9This point requires more attention than we have given it here. Equation
(5.3) shows the dependence of the energy on container size, and Eq. (5.28)
indicates the role of V in the partition function.
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eliminated from Eq. (3.20) with the help of the definition of tem-
perature,

oS\ _1_
(), - [yownz 0]

This differentiation gives

L gkl (N In Z e + 3u)aﬁ (3.21)
T aB =0
but
- Ze—aE e—su'
d
-—(Nlnze““JrSU)z—Nw +U
a5 i=0
Z ae—.ﬂ(\
where e~= has arbitrarily been multiplied and divided into the first
term. Then
- N Z Nie;
d —Aer i=0
—(NInZeﬂ“+ﬂU)= —_——— 4 U
a8 i=0
Z N;
i=0
or

a — e = _—
aﬁ(Nane +ﬁU)A U+U=0

Therefore, Eq. (3.21) reduces to

1

s (2.38)

g =
The choice of the symbol 3 for the second Lagrangian multi-
plier was made in anticipation of the fact that this multiplier is the
temper of the distribution. We have now shown that this choice
was correct.
The entropy, energy, Helmholtz function, and pressure for a
localized distribution are easily shown (Problem 3.5) to be

S = kNan+¥ (3.22)
dInZ
= kT2 3.2
d T N( aT )V,N B25)
F=—kTNInZ (3.24)

p = kTN(a:}nvz) (3.25)
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These results illustrate the way in which the remaining thermo-
dynamic properties can be extracted from Z once it is known. But,
if both the parameter, Z, and the fundamental equation of macro-
scopic thermodynamics give complete thermodynamic informa-
tion, we ought to be able somehow to obtain a macroscopic param-
eter equivalent to Z.

The Massieu function given by Eq. (1.48) provides the basis for

doing this:
F U Ff1
--—T:S— 7= —]—r(?, v, N) (1.48)
From Eg. (3.24), on the other hand, we can write this Massieu
function as
F 1
-7 = kN In Z( 7 V) (3.26)

Rearrangement of this equation gives the fundamental equation for
the system, in the Helmholtz-function form:

F(T, V, N) = —kNT In Z(T, V) (3.26a)
This can also be written as

F 1
“NT kin Z(?_, V) (3.26b)
where — F/NT is a Massieu function on a “‘per-particle’’ basis. The
equation

e FIkNT = Z (3.27)

therefore provides us with a macroscopic generating function
equivalent to the partition function.

Further discussion of the evaluation of Zis deferred until Sec.
3.7. Since the second Lagrangian multiplier is now known, the
derivation of the Maxwell distribution will now be completed.

MAXWELL
3.6 DISTRIBUTION

The molecular-velocity distribution in a stationary dilute gas,
Eq. (2.43), can now be obtained from the Boltzmann distribution.
The energy at the ith level, ¢, is assumed to consist of pure trans-
latory energy and the various internal molecular energies, Z €jiy

'}

which do not depend upon the translational velocities (the in-
dependence of the translational and internal energy modes is
discussed further in Secs.5.3and 7.1). These latter energy contribu-
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tions might arise from rotation or vibration of the atoms within a
translating molecule, for example. Then
m

. _m
!_2 -

C2+2 ¢
2 7
This energy can now be substituted into Eq. (3.12) — the Boltz-
mann distribution. After we have divided both N and N; by the
volume to get n and the number density n; of particles at the ith
energy level (or “‘within the jith energy cell’’) the Boltzmann distribu-

tion becomes
0 _§ r &i _mC¢2
n; = > exp ( - kT) exp( 2kT) (3.28)

where the i cells represent different locations in velocity space and
can all be located in a single large cell of position space, AV = V,
because the gas is in equilibrium and the distribution does not
change in space. Accordingly, N has been replaced by N,/V, the
number density n of the particles; and n; denotes the portion of nin
AQ. Finally [recall Egs. (2.11) and (2.12)], we can drop the subscript i
in the continuous limit so that Eq. (3.28) becomes

C;Z + €1; + €2 = e

n; mC2
f(C) ~ AG Aexp (_2—RT) (3.28a)
where AQ is volume-dependent, because Ar = constant = m3V AQ,
and
n exp (-—Z e;,_.'kT)
= B .
A A0 (3.29)
The factor A can be eliminated from Eq. (3.28a) with the help of
Eqg. (2.32a),
a = 1 c2 = E 2 (
kT =1m 2nfu(':f(C)cu
S0

KT A™ RV (ﬁm_w) (_mW
1 kT Aznfff(u + V2 + W) exp KT exp KT

W2
exp (—’;’k—r) dU dV dw

Appropriate integration by parts leads to

32
- [Ty ]
2nlL2\ m m

m \32
A = n(z—wﬁ_) (329&)

so that
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and the resulting Maxwell velocity distribution is

3/ 2
f(C) = H(TH;:T) : exp (—-?—k?;) (2.43)

PARTITION FUNCTION
AND EQUIPARTITION
3.7 OF ENERGY

THEOREM OF EQUIPARTITION

OF ENERGY

Certain of the arguments used to derive Boltzmann's distri-
bution can be recast to obtain another of the very powerful results
of classical statistical thermodynamics. This is the theorem of
equipartition of energy, which says: Each contribution to the average
energy of a particle that is a quadratic function of one of the coordi-
nates of the particle (e.g., x, y, z, U, V, or W) gives an average energy
of kT/2 per particle to the system.

The theorem can be proved as follows: Let the energy of a
particle at the ith level be expressed as a sum of component ener-
gies, at least one of which is quadratic in form,

€ = 61,-+E2|- s pCEOE o Q-'El: (3'30)

where ¢; is any (position or velocity) coordinate of the ith cell and «
is a constant of proportionality. Arguments analogous to those
which led to Eq. (3.28a) give, in this case,

f(5) ~ B exp (-%ﬁ) (3.28b)

where

N exp (—E Gji.__:kT)
J

B =
Z At H& (other coordinates)

(3.29b)
The average of ¢;, where ¢; = af?, is

ch_/ E2 exp (—af?/kT) dt

& = af? =

B[ exp (—ak?/kT) dt

_ a(\7/2)-3(kT/a)?
(Nr/2VKT/

or
_ kT

& =

2
which completes the proof.
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The equipartition theorem is a surprising statement about
molecular behavior. It says that whatever might be the various ways
in which a particle stores energy, the energy will be (on the average)
equally distributed among these modes of storage.!! If the mole-
cules of a system rotate in two directions as they translate, the
average molecule will possess just as much kinetic energy of rota-
tion in each direction as it will due to translation in, for example,
the y direction. It should be emphasized, however, that the validity
of the equipartition theorem as stated above is subject to the
following restrictions:

1. The Boltzmann distribution law is valid. This requires that
the gas be at an equilibrium condition.

2. The particles must be independent of one another.

3. The approximation of substituting integrals for summations
is allowable. This implies that the spacing between neighboring
energy levels must be small. We find out later that this assumption
breaks down for rotational and vibrational energies at sufficiently
low temperatures.

4. The total energy of a molecule can be split into energies
resulting from different modes of motion. This is true if the inter-
action between different modes of motion is negligible. For most
kinds of molecules the rotational and vibrational energies are not
really entirely separable.

5. Each component of energy must be a quadratic function of
the position or momentum component coordinate. The vibrational
energy of a large-amplitude oscillation (anharmonic oscillation)
violates this assumption.

If the number of modes of energy storage the particle can em-
ploy, or the number of degrees of freedom of the particle, is de-
noted by D, and if all energy storage is of the form, «f?, then the
specific heat of the particle can be expressed in terms of D. The
molar specific heat ¢, is, for example,

al J kT
o/t (ﬁ)v - [(.,T(N..\%)l

or

Co = —— (3.31)

so that for ideal gases

Cp = Cy+ RO = 1RYD + 2) (3.32)

It is helpful to recognize that this theorem is a direct manifestation of the
requirement that the system be in its most probable macrostate.
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Equation (3.31) is subject only to the restrictions listed above
and is not necessarily limited to ideal gases. In chapter 4, for ex-
ample, we find that it can be adapted to the prediction of the
specific heat of a solid.

A stationary monatomic gas that stores energy only in transla-
tional motion has an average energy per particle of

¢ =4+mU? + imVZ 4+ imW2
Hence it has three degrees of freedom, and
€= § kT
(something that we already knew), and
c&=34R" c¢,=%R0
The ratio of specific heats, is accordingly,
¥ = § = 1.667

which is the same as the experimental value for monatomic argon
(for example) at moderate temperatures.

A diatomic gas with two additional modes of rotational motion!?
(see Fig. 3.2) will have energies of rotation about the z and y coordi-
nates equal to €, and €, where

@, =4102 = %T
and

o — kT

&6, =+1,6,2 = 2

The symbols /; and §; denote the moment of inertia and the angular
velocity about the £ coordinate, respectively. D is now equal to 5 and

c=4%R" c,=1R®
so that
vy =%=140

which is the well-known value for diatomic gases at moderate
ternperatures.

A diatomic molecule at elevated temperatures will suffer excita-
tion of two additional degrees of vibrational freedom. To see

12Rotation about the axis is excluded because quantum mechanics shows
that this motion can only be excited at unreasonably high temperatures. See
the discussion of®, at the end of Sec. 5.3.



3.7 Partition Function and Equipartition of Energy 75
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Fig. 3.2 Modes of energy storage in a diatomic molecule.

A

5, D

mass

why this should be, consider the inset in Fig. 3.2. The center of mass
of the molecule is located so that

maz £ m
———— y = ——————
mp + mz my + ma

&L=

The total vibrational energy is composed of kinetic energy and po-
tential energy, both of which can be expressed in terms of the
square of coordinates. The average kinetic energy of vibration
€VK IS

R o kT
&VE = 1 m&? +4mk? =imi? = >
where
—_— mimaz
T omi+m

The average potential energy of vibration, evp, can be expressed in
terms of the “‘spring constant’’ of the molecule K and the equi-
librium displacement of the molecule, &.:

- KE— B2 =



76

classical statistics of independent particles

The total number of degrees of freedom for a vibrating diatomic
molecule is thus seven, so

y=19=1286

The reader might well question the omission of certain addi-
tional modes of energy storage in the preceding discussion. These
include the third rotational component 6, and electronic energies.
These have been omitted because our intuitive idea that they
should contribute little happens to be correct at moderate tempera-
tures. Nevertheless, nothing in the classical theory tells us to ignore
them. After we have investigated the quantum mechanics of inter-
molecular energy distributions, we find it possible to account for
the internal energy more accurately and to assign a proper role to
such contributions as electronic-energy storage. An understanding
of quantum-mechanical effects reveals that the excitation of each
degree of freedom occurs in a series of very small steps such that
€; approaches kT,2 asymptotically. The variation of ¢, with tempera-
ture for molecular hydrogen (for example) thus takes place as
sketched in Fig. 3.3 rather than in abrupt steps.

It is of interest to note that the number of coordinates that
would be needed to fully describe the motions of all atoms in a
molecule is three times the number of atoms. Thus a monatomic
particle can have only 3 modes of motion. A diatomic molecule can

Fig. 3.3 Variation of ¢, of hydrogen with temperature.
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have 3 x 2, or 6: Three in translation, two in rotation and one in
vibration. A planar triatomic molecule has three each (or nine) in
translation, vibration and rotation. More complicated molecules
will have three possible additional modes of vibration for each
atom. Whether or not all the possible motions will all be activated,
however, is a quantum mechanical problem.

PARTITION FUNCTION FOR
AN IDEAL MONATOMIC GAS
It was shown in Sec. 3.5 that the partition function could be used

as a generating function for thermodynamic properties, but the
problem of writing it in a useful form was deferred. The partition
function for an ideal monatomic gas can now be obtained from
Egs. (3.29) and (3.29a) by noting that the nontranslational energies

Z e;,-,.«-’kT) are zero in this case. Then

)
A ( m k¥ri Ne—’o
- kaT) “Zaov
or, since N/n =V,
1 [2xkT\32 V

=— = — 32 3.33
Z AQ ( m ) A (2mmkT) (3.33)
The constant Ar, which can be varied arbitrarily, thus appears to
influence the partition function. With reference to S, U, F, and p
[Egs. (3.22) through (3.25)] we see that Sand F will be affected by this
choice to the extent of an additive constant equal to —In A7, while
U and p will not be affected at all. Quantum mechanics will provide
means for fixing upon one appropriate value of Ar, the use of which

will eliminate this measure of arbitrariness.

EXAMPLE 3.2 Obtain the distribution function, partition function,
and specific heat for air molecules in the earth’s atmosphere if it
is approximately isothermal?

This problem can be solved in either of two ways. We can em-
ploy the ideal-gas law, p = pkT/m, in the hydrostatic equation

dp = —pg dz, where z is the vertical coordinate. This gives
dp _ _mg
p ~ kT %

Integration from p(z = 0) = po up to a point of interest gives

mgz
P = po eXp ‘_k_T‘

But p ~ n in an isothermal atmosphere, so

n=n exp( mgz)
= no L
kT
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Although the ideal-gas law used in this derivation was ex-
pressed in terms of some microscopic parameters, the derivation
has not really used any microscopic concepts. It turns out that we
can derive the same relation using Boltzmann statistics without
making any reference to the macroscopic notion of a hydrostatic
pressure formula. We begin by writing the energy of a particle!3 as

where rotational and vibrational energy contributions have been
neglected.
Thus the Boltzmann distribution of n in z will take the form

kT

where the constant will include such things as Z, the integrated
kinetic energy contribution, and cell sizes. We went to the trouble of
writing out the constant in an analogous computation in Eq. (3.29),
butitis not really necessary to do so. Here we can simply note that
when z = 0 the constant can be evaluated as no. Thus

n = noexp (-792)

which is the same result that macroscopic considerations gave.

It is extremely interesting to note that the equipartition theo-
rem does not apply in this case because the gravitational energy is
not quadratic in form. Thus the specific heat, for example, cannot
be written as DRY/2, with D = 3 4+ 1, or 2R?, as we might be tempted
to try. Instead

and to write the partition function we ignore rotational and vibra-
tional contributions and begin with

5 mC2 mgz,-)
‘gl‘”‘p( ) .Z%“’"p( 2kT kT

This can be approximated with integrals! as

p‘2 -+ p- T P- mg
f/f [f f exp kT kT ]dp, dp, dp. dx dy dz

XJZ mom

n = constant-exp (—@2)

@'
oT|v.n

dInZ
aT

C, = (ROT2

T oaT

13We do this problem here as though there were no rotational contribution.
We seein Sec. 5.3 that this is actually incorrect.
14This approximation is discussed with some care in Sec. 5.4.
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or

Area [ kT
_ 32
Z Ar ( g) (2mmkT)

Substituting this in the expression for ¢,, we get
c=4RO

Thus gravity contributes 2R?/2 to the specific heat.

Much of the analytical apparatus that will be used subsequently
to obtain thermodynamic information from molecular aggregates
has now been established. One important tool — quantum me-
chanics —is lacking. At several points in the preceding sections
arguments had to be terminated short of completion because of
this lack. Therefore, we must now digress from the problems of
thermodynamics to outline those elements of quantum mechanics
that we need, and return to a more complete discussion of the par-
tition function in Secs. 5.3 and 5.4.

Problems 3.1 Suppose you are rolling two dice. What is the probability of

rolling any particular microstate? What is the probability of rolling
the macrostate 4? What is the thermodynamic probability of the
macrostate 4? Discuss the application of the principle of equal
a priori probabilities to the dice.

3.2 A playing card lies face down on the table. A picks it up and
looks at it but B does not. What entropies do A and B compute for
the card? What assumptions must underlie these computations?

3.3 Air at standard conditions circulates freely in a large box
subdivided into leaky cells of volume 1 cm3. The thermodynamic
probability, W., , for the distribution of equal numbers of molecules,
N,,., in each of the cells should exceed the value, W,.., for the non-
equilibrium situation in which the numbers in the cells differ.

(a) Compute W,.. for the case in which all but two cells con-
tain N, particles. One of the remaining cells contains
(N.,. +n) and the other, (N.. — n) particles, where
(n/Neg) << 1.

(b) Using the power series expansion for In (1 + x) in Ap-
pendix E, Sec. 2(c), compute In (W,. /W, ) for(a) and use
the result to determine W,. /W., for the case in which
one cell contains 1 percent more molecules, and one cell
contains 1 percent fewer, than N,,.. What maximum per-
cent deviation would be expected in a thousand pairs
of cells?

(c) What entropy decrease would be associated with the
one percent fluctuation described in part (b)?
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3.4 Find (a) the partition function for a two-dimensional mon-
atomic gas, and (b) the equations of state of the gas, by regarding
the expression for the Helmholtz function as the fundamental
equation.

3.5 Derive Egs. (3.23), (3.24), and (3.25).

3.6 Show the complete derivation of the Maxwell distribution.

3.7 On the basis of the classical theory, determine the values of
¢, and v for a gas composed of molecules with four atoms at the
corners of a tetrahedron.

3.8 Use Egs. (3.33) and (3.25) to derive the ideal-gas law.
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By the end of the nineteenth century scientists had generally
achieved remarkable advances in discovering what they believed to
be the basic mechanisms upon which the universe was ordered.
Some men felt that the remaining work of science lay in little more
than completing details. So orderly was Victorian science that cer-
tain flaws in the structure did not seem to harbor serious trouble.
The success of Maxwell-Boltzmann statistics was part of this
picture of complacency. When, in 1901, Planck provided a basis for
explaining the failure of classical statistics to describe certain
phenomena, a revolution was set in motion. By 1927 this revolution
had altered not only the structure of science but the very concepts
of causality and determinacy upon which it was based.

The revolution originated when Planck succeeded, while clas-
sical theory failed, in explaining the energy spectrum of electro-
magnetic radiation. More questions were raised by his explanation,
and the resulting chain of explanations was largely resolved in
Schrédinger’'s mathematical formulation of quantum mechanics in
1926 and Heisenberg's enunciation of the uncertainty principle in
1927. We now introduce the laws of quantum mechanics and treat
the statistics based upon quantum concepts in chapter 6.

81
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PREQUANTUNM

THEORIES OF

BLACKBODY
1.1 RADIATION

The term *‘radiation’ is applied generally to the process that
transmits energy from one body to another in the absence of a
material medium between them. This process is often conveniently
described in terms of electromagnetic waves. The electromagnetic-
wave spectrum ranges from radio waves of extremely long wave-
length and low frequency to cosmic rays of extremely short wave-
length and high frequency. The thermal radiation emitted by bodies
by virtue of their temperature is distributed over wavelengths from
about 10-% to 102 cm in moderate ranges of temperature.

STEFAN-BOLTZMANN LAW
The temperature dependence of the total blackbody energy
flux E is given by the Stefan-Boltzmann law,

E=oT? (4.1)

The Stefan-Boltzmann constant of proportionality ¢ is now known
to be 5.6697 % 105 erg/cm?-sec-°K*. This relation was first sug-
gested in 1879 by Stefan on the basis of experiments. Five years
later Boltzmann derived it on the basis of thermodynamic
arguments.

Itis helpfulin following Boltzmann's arguments to take the view
that electromagnetic radiation can be interpreted as particle action
instead of wave action. From Eq. (2.31), the pressure exerted by
particles reflecting from a wall can be expressed as

n, —. 2 kinetic energy
=—(mC)=-—— - =5
P 3(m ) 3 unit volume
Actually, it has been shown that the pressure p,.q exerted by radia-
tion is only half this.! Thus we have the result noted in Example 1.2:
u
rad = 3 4.2
Prad 3 4.2)

Equation (2.52) also gives the flux of radiation ‘“‘particles’ as
nc;, 4, where ¢, is the velocity of light. The flux of energy is then the
product of this particle flux and the energy per particle, u,/n:

cu

£ = T (4.3)

IFor a discussion of this and related matters, see, for example, F. K. Richt-
myer, E. H. Kennard, and T. Lauritsen, Introduction to Modern Physics, 5th
ed., McGraw-Hill, Inc., New York, 1955, chap. 4.
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Boltzmann used Eq. (4.2) and the thought model of a Carnot
engine driven by radiation to show that

u = constant- T4 (4.4)

Substitution of Eq. (4.3) in Eqg. (4.4) then gave the Stefan-Boltzmann
law, Eq. (4.1). The Stefan-Boltzmann constant ¢ remained an em-
pirical parameter in the Boltzmann prediction but Planck’s sub-
sequent quantum prediction included a theoretical value of o.

ENERGY SPECTRUM
The monochromatic emissive power or the spectral emissive power
E, (\, T)is the distribution function for energy as a function of wave-
length. It is defined [recall Egs. (2.9) and (2.10)] such that

E - ﬁ T B, T)dA (4.5)

We also define a spectral energy density u, such that £y = ciuy/4.
The function E, or uy has great practical importance, and the deter-
mination of its form was the subject of considerable attention in the
late nineteenth century.
Wien tried in 1893 to establish the relationship among u,, T, and

X\ and was only partially successful. He was able to prove that the
functional relationship was

Uy C|

5~ ) f(\T) (4.6)
where C) is a constant and the function f was unknown. In 1896 he
argued that f(A\T) should be exponential in form and obtained what
is known as Wien's distribution,

1
o = cvsexp () @1

where C; is a second experimental constant.

Accurate measurements of A, T, and E, were made by Lummer
and Pringsheim in 1899. Their data defined curves such as are
shown in Fig. 4.1(a). Figure 4.1(b) shows the correlation curve
through all these data on E, T3 versus AT coordinates. It also shows
that Wien’s distribution law, which works very well for low AT, fails
at large AT.

Figure 4.1(b) shows that the maximum E, occurs where

(ATEpemax = 5216 u-°R = 0.2898 cm-°K (4.8)

Equation (4.8) is shown as a locus of the maxima of the curves in
Fig. 4.1(a). Equation (4.8) is the one empirical fact that Planck had to
usein developing the quantum distribution, and we return toitlater.
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RAYLEIGH-JEANS LAW
An important attempt to formulate the distribution law for Ey

was developed by Rayleigh in 1900 and redeveloped in a simpler way
by Jeans in 1905. The equation was not accurate in correlating data,
but it would be the correct result in a strictly classical world and it
has important aspects in common with Planck’s derivation. It there-
fore merits our attention.

Letthere be a quantity of radiant energy contained in a box (see
Fig. 4.2) of volume V = abc. The walls of the box are perfectly con-
ducting and perfectly reflecting. These conditions require that the
electromagnetic waves stand in the box as shown and that their null
points coincide with the wall, which (by virtue of perfect conduction)
can sustain no electric potential.

The waves within the box are subject to Maxwell's equations
for an electromagnetic field in free space. These can be combined
into the following forms:

1 d02E
2F — —
V2E o2 o (4.9)
and
1 d2H
V2H = — .

H ¢ at2 (4.10)
where H is the magnetic intensity of the field and E the electric in-
tensity.

Equation (4.9) actually consists of three scalar equations of the
form
1 92E.
V2E, = —— 4.
b=cion .11

Fig. 4.2 Jeans's radiation thought model.




86 development of quantum mechanics

The boundary conditions on E(x, y, z, t) are

EQ,y,z,t) = E(a, ¥, 2z, ) =0
E(x,0,z,t) = E(x, b, z, t) = 0 (4.12)

and
E(x, y,0,t) = E(x,y,c, ) =0

The solution for this system is

E. = A sin 2zt sin (”Z‘x) sin (%y) sin (F”*‘z) (4.13)

E, = B sin 2mut sin (E’;-—") sin (“”-"y) sin ("'”=z) (4.14)

and

E:

[

C sin 2xut sin (M) sin (m) sin (355—"") (4.15)
a b (>

where A, B, and C are constants and » is the wave frequency,
e % (4.16)

The three eigenvalues n., n,, and n. are integers that have the
physical significance of being the number of standing-wave loops
in the box. In one-dimensional wave motion, the wave number n is

n=—=— (4.17)

In three-dimensional wave motion, A (or ¢;/») has to satisfy wave
numbers in three directions, so that
2 n. \2
) " (2_) (4.18)

o ’II(EE . (”_

N V\2a) T\

The Rayleigh-Jeans derivation now proceeds as follows. In
accordance with the equipartition theorem, each wave component
is treated as a simple harmonic oscillator that is free to vibrate in

two directions and that is, therefore, possessed of an average
energy

€=2(2 X 1kT)=2kT (4.19)

The two directions of vibration are the two directions of polarization
of the wave. They are illustrated for an x-directed wave in Fig. 4.3,
This ingenious application of the equipartition theorem now pro-
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Fig. 4.3 Idealization of doubly polarized wave motion used by Rayleigh-
Jeans and Planck.

A - Y >|

v

A .
A\

(a) The y and z polarization of an x-directed wave.

() Idealization of the wave as a series of mechanical oscillators.

vides a basis for calculating uy (and, with it, Ey) if we can say how
many components of each wavelength are present.
It is expedient to designate as ny the number of wave com-

ponents in the range 0 < 1/A < (1, Minterest. Clearly, if we consider ng
and A as continuous,

@ A
no(2kT) _ [ U d\ = U — f Uy dN (4.20)
v SN 1]
or
2kT dng
vV oan (4.21)

The number ny is obtained with the help of the following simple
device. Equation (4.18) defines a different ellipsoid in ny, ny, n: space
(see Fig. 4.4) for each value of \. The total number of points within
the )\ surface is numerically equal to the volume of the positive

eighth of the ellipsoid,
dr2a2b2c 4xV 4.22)
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Fig. 4.4 Devize for counting wave components,

J
>|$

A surface for one

Decreasing A value of A

Differentiation of Eq. (4.22) and substitution of the resultin Eq.(4.21)
gives the Rayleigh-Jeans law directly,

8rkT an

W = X or FE (4.23)
or
BT = f;";;’; (4.20)

Equation (4.24), which is based upon the classical equipartition
theorem, does not provide a good prediction of E, except for very
large values of A T. A typical comparison of both the Wien and the
Rayleigh-Jeans law with experimental data is sketched in Fig.4.1(b).
(The region in which the Rayleigh-Jeans law becomes accurate is
off scale in the figure.)

This, then, was the stage for Planck's work in 1901. Wien's
semiempirical law offered a convenient representation of the data
over most wavelengths, but the classical theory was concurrently
providing only a spectacular failure in representing the data.
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PLANCK’S

QUANTUM THEORY

OF THE ENERGY
4,2 SPECTRUM

Planck's attack did not differ from the Rayleigh-Jeans develop-
ment up to the establishment of the relation uy, = (47/\*)e. At this
point he replaced the classical equipartition expression for & with
the following heuristic proposal:

There is a discrete set of energies that a physical system such
as an oscillator can assume. The system cannot assume inter-
mediate energies. The energieseo, €1, - . ., €, . . . are spaced so that?

=1/ i=012,... (4.25)

where, in turn, e is the smallest physically meaningful energy in-
crement. It is directly proportional to the classical frequency » of
the oscillator. Thus

€= h (4.26)

where the constant of proportionality h (called Planck’s constant)
will be evaluated subsequently. Planck had originally intended to
let h — 0 but found that in doing so he only obtained the Rayleigh-
Jeans law, and that violated Eq. (4.1), which is a constraint on the
energy.

Planck’'s proposal is contrary to our intuition as to the “‘way
things are,”” and indeed they offended the thinking of his con-
temporaries. The reasonableness of the assumptions will become
increasingly clear to us, however, as we trace the developments
that followed Planck’s work.

The average energy of a wave ¢ is defined as

o
Z Nie;
i=0

®

Z N;

i=0

=2 (4.27)

where the factor of 2 again accounts for the fact that each wave is
being construed as two oscillators by virtue of double polarization.

2We find in chapter 5 that, for a harmonic oscillator, Eq. (4.25) should be
e = (i + e. This correction, based upon later quantum theory, did not
change Planck’s results. We also see in chapter 6 that Eq. (4.25) must be
abandoned in favor of a different characterization of energy when we
take the more sophisticated view that photons form a ‘‘degenerate ideal
gas."”
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Using the Boltzmann distribution to describe the energy distribu-
tion among the mechanical oscillators that replace the actual
waves in this construct, we obtain

N; = = exp (— fl) (3.12a)

in which N; is the number of oscillators in the ith energy level. The
constant N, Z is obviously equal to N, for a given distribution, be-
cause ¢ = 0; thus

Ni = Ny exp (—;—fr)

It follows that

Z N; = No{l + exp (—%) + [exp (—k—;)]z

+Low (-5)] +-

butthe termin braces in Eq. (4.28) is the power-series expansion for
[1— exp(—¢kT)]"! when[exp (—e/kT)2 < 1. This is clearly the
case, so

(4.28)

o N!]
Z Ni={_ exp (—e/kT)

i=0

(4.29)

Likewise,

= B € €
z alN; = GZ iN; = eNp exp (_ﬁ)ll + 2 exp (_k_f)

+ 3[exp (—E‘?)] T } (4.30)

The term in braces in Eq. (4.30) is the power-series expansion for
(1 — exp (—¢/kT))"2 when [exp (—e¢/kT)]2 < 1, so

eNo exp (—e/kT) B eNp
Z &lNi = (1—exp(—e/kT)]2 [l — exp (—ekT))[exp (e/kT) — 1]

” (4.31)

The substitution of Egs. (4.29) and (4.31) into Eq. (4.27) and the
subsequent use of Eq. (4.26) gives

2¢ 2hy
: = = 4.32
T exp(e k) — 1 exp(hnkT)—1 (5:52)
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Thus we obtain Planck’s distribution,

r | 8mwhy
=N [exp (hy/kT) — 1]\* (4.33)
or
8rhc
7 Nlexp (he/AkT) — 1) (4.34)
and
2
o =2 (4.34a)

Mlexp (he/AkT) — 1]

Equation (4.34a) predicts values of E, that fall within the ac-
curacy of the experimental results. However, its use depends upon
the prior evaluation of Planck’s constant h. This is achieved by first
writing

auy

=0 4.35
N [\T=0.2898 en-°K i)
The numerical solution of Eq. (4.35), following the substitution of Eq.

(4.34) for u,, gives the value of Planck’s constant h as 6.625 % 10-27
erg-sec.

We can also evaluate the Stefan-Boltzmann constant ¢ using
Eq. (4.34a),

E=gqTd =f E\ d\ =f E, dv (4.36)
0 0

The transformation of the integrand of this expression is accom-
plished as follows:

2
E. d\ - 2rhe; (——dea)

(c:/v)lexp (hv/kT) — 1]\ 12

or

3
End) = =

c? exp (hv/kT) — 1 o e

With the substitution of this value of E, dv and with the introduction
of the change of variable x = hy/kT, Eq. (4.36) becomes

2rkiTH [ x3g~>
T4 = dx 4.37
o c2h’ ﬁ: 1— &= 4.37)
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The term (1 — e *)"! can be expanded in a power series and the
series of terms can subsequently be integrated by parts. Then the
introduction of the Riemann zeta function? of 4,

c1 4
{W =25 =g (4.38)
leads to the result
2w5k4
g = 15c2h3 (4.39)

Planck’s theory thus accomplishes a complete and accurate
description of blackbody radiation with the help of a single ex-
perimental fact, Eq. (4.8). When we take up a discussion of quantum
statistics we find that his success (like that of many other great
theorists) was the result of sound intuition embedded in a slightly
incorrect exposition. Today's quantum model for radiation is more
complex than an oscillator with discrete allowable energy levels, as
we see in Secs. 4.4 through 4.6. Furthermore, the oscillators are not

conserved (Z N; # constant), because radiation is absorbed and

reemitted at the walls.

These objections are removed by treating radiation as a collec-
tion of degenerate particles that obey Bose-Einstein statistics. We
discuss these particles in chapter 6 and give them the name “pho-
tons.” The results obtained in this way are the same as those of
Planck, but it is not surprising that a full acceptance of quantum
theory had to wait for further clarification.

Itis interesting, in this connection, to read Jeans's discussion*
of his perplexity over the meaning of Planck’s correction of his own
prediction. The quest for the true nature of radiant energy during
the early 1900s is reminiscent of the fable of the blind beggars and
the elephant.s The difficulties raised by the dual view (wave versus

5

iThe Riemann zeta function {(a) is defined aszrﬂ. It has important applica-

i=
tionsin the subject of analysis. [See, e.g., E. T. Whitaker and G. N, Watson, A
Course in Modern Analysis, 4th ed., Ca mbridge University Press, New York,
1963, chap. 13. See also Appendix E, 2(b).]

#Sir James Jeans, The Dynamical Theory of Gases, 4th ed., Dover Publications,
Inc., New York, 1954, secs. 484-493, 525-528,

“Seven blind beggars approached an elephant. The first bumped into its side
and cried, "“The elephant is very like a wall.” “No" said the second, seizing
its tail, “The elephant is like a rope.” The third, feeling an ear, said ‘‘He
is like a leaf.” *'He is like a serpent,” said the one who laid hold of its trunk.
“Atree,” said the one by its foreleg. The sixth struck a tusk and shrieked,
“He islike a spear and is going to impale me." The seventh beggar heard all
this and thought, “*Whatever he is, he is bewitched,' and he fled.
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corpuscular) of radiation were not to be resolved until about 1927.
Meanwhile Albert Einstein provided the early quantum theory with
its second great success.

In 1906 Einstein, who was later to oppose certain features of the
modern quantum theory, helped to put the new theory on its feet
by using the quantization of energy to predict the specific heat of
crystalline solids. We study this application next.

EXAMPLE 4.1 Derive Planck’s law for a two-dimensional space.
In this case, the solutions of Maxwell's equations are

A sin (2mut) sin (”—?) sin (%’)

B sin (27vt) sin (E%’i() sin (%y)
where the n. and n, must satisfy

2r\? R . ﬂy)z
(c;) B (a) + (b

The number of standing waves with frequency » is given by
analogy with Eq. (4.22) as

EX

and

£y

w2av by TA

g = —— — =
0 4 ¢ ¢ cr?
where A is the area. Then
u eédny 2my_
y = ——— = —— §
A dv Cy

and & is one-half the value given by Eq. (4.32), because only single
polarization is meaningful in two dimensions. Thus

o () ]
ik c? R kT

It can be shown (Problem 2.19) that the two-dimensional an-
alogue of Eq. (2.52) is

nc;

metic]ea =

So the energy “‘flux’’ in this case is

c [®
=-[ Lo
o



94 development of quantum mechanics

Under the substitution of the preceding expression for u, we obtain
from this

E = o,T3
where the two-dimensional “‘Stefan-Boltzmann'' constant gy is
2k* (= x

_ 2 . a d
ch? [, e —1 X

oz =—

The evaluation of ¢. is left as an exercise (Problem 4.6).

Thus two-dimensional radiation would be less temperature-
sensitive than three-dimensional radiation, because F is propor-
tional only to T3,

SPECIFIC HIIATS
1.3 OF SOLIDS

LAW OF DULONG AND PETIT

Dulong and Petit noted in 1819 that the molar specific heat of all
elementary solids is very nearly 6. Neumann extended this law in 1831
to say that each atom in the molecule of a solid contributed 6 cal/g
mole-°C to the specific heat of the solid. Typical experimental
specific heats for solids are given in Table 4.1.

TABLE 4.1 Application of the Laws of Dulong and Petit and of Neumann

Molar ¢, for Monatomic Solids Molar ¢, for Diatomic and Triatomic Solids
Substance T,°C | ¢, cal g mole—°C | Substance T, %G c./2or3, cal/g mole-°C
Ag 0 6.00 AgCl 28 6.27
Au 0 6.07 Cu0 22 5.20
Cr 0 5.35 KCI 23 6.20
Fe o | 5.85 CusS 25 5.95
Ni 0 6.05 PbO: 24 5.17
Sb 0 6.00 CaF: 15-99 5.61
Graphite 0 1.82 Zn0 16-99 5.08
Diamond 0 1.25 PbCI; 0-20 6.08

Although these laws are by no means exact, they strongly
suggest that some underlying physical principle might be respon-
sible for the degree of success they do enjoy.

CLASSICAL EQUIPARTITION
THEORY FOR THE SPECIFIC

HEATS OF SOLIDS

The equipartition theory provides the following simple ex-
planation for the laws of DulLong and Petit and of Neumann: An
atom in a solid is considered to be a localized harmonic oscillator,
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with three modes of vibration. There are two degrees of freedom
associated with each mode of vibration, or a total of six degrees of
freedom. Then Eq. (3.31) gives, for a monatomic solid,

¢, = 1(6)RY = 5.972 cal, g mole-°C (4.40)

Equation (4.40) verifies the empirical laws beautifully, but it
fails to explain why certain substances deviate very strongly from
these laws. The specific heat of diamond is only 1.25 at 0°C, for ex-
ample, butifitis heated to relatively high temperatures, its specific
heat also approaches 5.972 cal g mole-°C. Indeed, if the specific
heats of a variety of simple solids are plotted against temperature,s
the results will be of the form shown in Fig. 4.5. Equation (4.40) thus
appears to provide a limiting value of ¢, as the temperature is in-
creased. However, it fails at low temperatures just as the classical
Rayleigh-Jeans radiation expression failed at low values of AT.

EINSTEIN'S QUANTUM-
MECHANICAL SPECIFIC-HEAT

LAW

¢, cal/g mole - °K

Einstein recognized that a quantum explanation might resolve
the failure of the classical specific-heat theory. He argued that
Planck's equation for the average energy of an oscillator should
be used for atoms in a solid as well as for electromagnetic waves,

Accordingly he wrote the molar internal energy for monatomic
solids

J

u= N,
Fig. 4.5 Temperature dependence of ¢, for many solids. @p;, = 88, 0.4 = 215,
Oy = 218, Oz, = 235, Ox,ep = 287, e, = 315, Oy = 392, e, = 499, G =
1860.
o P e ——

—r—k -

-
Ve ~Finstein e,
/
i /
/ Combined data for:
/ Pb. Ag, KCI, Zn, NaCl,
2+ f Cu, AL CaF,. and C
/
/
0 1 1 J
0 |

Dimensionless temperature, 77/0

SFigure 4.5 actually correlates data for nine different substances onto a single
curve, with the aid of a dimensionless temperature, T/6). This correlation is
explained fully in chapter 5.



9%

1.4

development of quantum mechanics

WAVE

The substitution of Eq. (4.32) for &, and multiplication of the result
by i, since there are now three instead of two modes of vibration,

gives
L 3Nahy
T exp(hv/kT)—1

Einstein's specific-heat expression is obtained by differentiating
this expression,
du (hv/kT)? exp (hv/kT)

¢ = 371, = N (exp (ho/kT) — 1P

(4.81)

or

Xle.t
¢, = 3RO e — 1y (4.41a)
where x = hy/kT. The characteristic temperature (is hyv,/ k, however;
thus x = (/T. It is easily shown (Problem 4.3) that

lim (c.) = 3R (4.42)
78—
Hence both Einstein's specific-heat equation (4.41) and the Planck
radiation expression approach their classical limits as kT, hy or
AkT/hc; becomes large.

Einstein's specific-heat relationship gives the proper qualitative
form for c,(T). Itisexactinthelimitsas T-—+0and T — «, butitisa
little inaccurate in the intermediate range (see Fig. 4.5). The reason
lies in Einstein's assumption that the atoms are independent and
all have the same classical frequency of oscillation.” Debye and
others subsequently improved upon Einstein's prediction. We take
up this work in chapter 10.

CHARACTERISTICS
OF MATTER

By the end of the nineteenth century, general acceptance was
given to the view that matter was corpuscular in character and that
light (as well as other kinds of radiation) was some sort of wave
action, Planck’s quantum hypothesis then suggested that radia-
tion might, after all, be endowed with certain corpuscular proper-
ties. By 1920 the dual nature of radiant energy was (as we have
observed) generally recognized and radiant energy was thought to
be carried in the form of corpuscular elements called photons. A

"This assumption was implied when Eq. (4.32) was used for e. Equation (4.32)
was derived by considering waves of only one classical frequency ».
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photon had an energy equal to hy and was endowed with certain
wavelike properties.

There was no suggestion up to this time that material particles
might conversely exhibit certain wavelike characteristics. However,
a formal analogy between geometric optics and classical mechanics
had long been recognized.

ANALOGY BETWEEN
CLASSICAL MECHANICS AND
GEOMETRIC OPTICS

MATTER WAVES

The laws of geometric optics are derivable from Fermat’'s
principle of least time (1650). This principle states that of all the pos-
sible paths light might take between two points A and B, the actual
path will be that for which the time of travel is minimal. Since the
velocity of light is constant we can express the principle in varia-
tional form, calling S/ A the distance in wavelengths,

BdS
é(fA T) =0 (4.43)

The variation § compares neighboring values of distances along
paths between fixed end points A and B. That it vanishes implies
that the path is of minimal length.

Maupertuis's principle of least action (1740) is analogous to
Fermat’'s principle. It says that?

5([8,00*8) =0 (4.44)
A

where p is the momentum of a particle. The product p dS is called
action. It has the same units as Planck’s constant, h, which is some-
times called quantum action.

De Broglie examined this analogy in 1924 in connection with his
doctoral thesis. The result of his work was a bold suggestion as to
the character of material particles.

De Broglie argued that if the corpuscular and wave concepts of
light were inseparable, then perhaps the corpuscular and wave
concepts of matter might also be inseparable. Thus he postulated
that there would be a frequency » and a wavelength X\ ‘‘associ-

8This is a special case of Hamilton's principle, which says that for conserva-
tive systems, a(f L dt) = 0, where tis time and L, the "Lagrangian,” is
iy

the difference between the kinetic and potential energies of particles.
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ated’” with a particle of total energy? ¢ and momentum p such
that
h
e = hy and p= X (4.45)
The de Broglie wavelength A can be evaluated, for example, for a
simple particle of mass m translating at speed v as

h
A=— :
p— (4.46)
Let us consider an important experimental result and some as-
pects of wave behavior before we complete our interpretation of the

notion of matter waves.

Soon after de Broglie's dissertation appeared, it was pointed
out that, if de Broglie's ideas were correct, particles such as elec-
trons should exhibit diffraction effects. In 1927 Davisson and Ger-
mer succeeded in observing a diffraction pattern in low-energy
electrons reflected from a nickel surface (see Fig. 4.6). This diffrac-
tion effect could only be explained by attributing wavelike proper-
ties to the electrons.

Since the low-energy electrons used in the experiment do not
penetrate the crystal appreciably, interference depends primarily
on the scattering by the surface layer of the crystal. Figure 4.7 illus-
trates this interference for a case in which \ = d 2. It shows a row
of atoms in the surface of the crystal, each of which acts, according

Fig. 4.6 Intensity of electron current as a function of 4.

Back reflection

Electron beam /

(54-¢V electrons) P
? —~ Peak at 8 ~ 50°

-
mat] //
2

-

Surface of the crystal

“The total energy includes the relativistic energy m.c,2, where m, is the rest
mass. For a particle in translational motion: m = m.(1 — v2/c;2)"!'2. When
v as in most actual situations, m — m. (1 4 v2 2¢;2), or me;? = m.e?
+ 1 mov3,
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Fig. 4.7 Explanation of diffraction maximum in terms of wave interference,
for the special case A = d/2.

/Elcclmn beam

to Huygen's principle, as a secondary source of waves. Waves
emanating from atoms A and B interfere constructively at P if the
path difference AP — BP = n)\, where )\ is the wavelength of the
waves associated with the electrons and nis an integer. Hence for a
first-order maximum (n = 1) the angle # should be given by

AP — BP = dsinf = \ (4.47)

aslongas PC>> d. For nickel, the line spacing d is known from x-ray
data to be 2.15 A and we find that for 54-eV electrons, \ — 1.67 A.
Therefore, # should be 51 deg in Fig. 4.6 — in excellent agreement
with the experimental results.

SOME QUANTITATIVE
ASPECTS OF THE WAVELIKE
CHARACTER OF MATTER

Combining Egs. (4.45) and (4.46) gives us a wave speed w for
“matter waves,'’

W=\ = (4.48)

Ol
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With the Einstein relation converting mass to energy e = mc;? and
p = mv, we have

wv = ¢? (4.49)

Thus, the velocity of a particle will equal the velocity of the waves it
comprises, only if the particle velocity can approach the speed of
light. For all actual moving particles, v is less than ¢, and Eq. (4.61)
requires that the corresponding phase velocity exceed ¢;. But we
have no way of relating a velocity greater than ¢, to any physical
process. Itis therefore impossible to devise any means for measur-
ing or observing the phase motion.

What kind of wave is this that moves at a speed that differs so
greatly from the speed of the particle but which should in some
sense be associated with the particle? We can gain some insight
into the answer to this question by considering the general behavior
of waves. The ‘“‘displacement’ of a wave can be represented in the
following convenient form:

¥ = Ccos (kx — wt) (4.50)
where Cis the amplitude; the wave number, k = %{f; and the angular

frequency, w = 27v. Thus

w

We also define a quantity called the phase, ¢ = kx — wt, so that

dax w
(ot) K= phase speed, w (4.52)

==tonst

The phase speed is thus the speed c¢f a point on the wave at a speci-
fied phase angle.

Now let two waves with different angular frequencies and wave
numbers be superposed as shown in Fig. 4.8. The equation of the
combined waves is

V¥, = Clcos (kix — wit) + cos (kax — w2t)] (4.53)

Using the trigonometric identity

cos A + cos B = 2 cos (4—5—3) cos (A ;8)

we can write ¥, in the form

¥, = 2C cos (kX — wet) cos (kux — wwl) (4.54)
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Fig. 4.8 Superposition of two waves.
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Obviously w, < w.. Therefore, cos (k.x — w.t) is the low-frequency
term that determines the amplitude of the envelope of the high-
frequency curve cos (k.x — w.t).

The speed with which the envelope propagates to the right is
called the group velocity w,. It is the phase velocity of the envelope

We w2 — Wi
We = P — (4.55)

The phase speed w, of the high frequency waves inside the en-
velope is

Wy W T w2
gy - 4.56

w!’ kw kl n kZ ( )
Suppose that these two frequencies become very close to one an-
other. Then, for a given phase velocity, ws — w < w and ka — k< k.
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This would give a very low frequency ‘‘group” for the two
waves. In the limit Egs. (4.55) and (4.56) become!?

group velocity, w. = gi; (4.57)
phase speed, w, = E (4.58)

Thus the wave (or phase) speed will differ from the group
(or envelope phase) speed in a way that depends upon a dispersion
relation w = w(k) appropriate to the particular process. It turns out
that an actual particle is the manifestation of the beating of a
packet of many adjacent waves —not of just two waves —and
Eq. (4.55) is not the appropriate dispersion relation for a particle.
The actual particle velocity v is thus the group velocity for the
packet. The phase velocity w of the matter wave is given by Eq.
(4.52) as bheing faster than light and not subject to easy physical
interpretation.

UNCERTAINTY
4.5 PRINCIPLE

The idea that matter must be explained in terms of wave action
should rightly imbue us with a certain uneasiness. Allied with this
idea is the suggestion that matter is a more ephemeral thing than
our intuition first tells us. Equations (4.45) show that the wave-
lengths of fairly substantial material particles are unthinkably small
and frequencies are inconceivably high. But what about very small
particles? Clearly they are somehow smeared about in time and
space. Heisenberg's Uncertainty Principle expresses the indefinite-
ness of matter in a quantitative way.

The principle can be developed by consideration of a problem
of measurement. Suppose a cosine wave passes a point and we wish
to count the number of wave crests going by in unit time. We have a
standard clock consisting of an oscillator that produces waves
whose frequency we wish to compare with that of the incoming
wave.

A beat may arise because the frequencies of the two waves

10Musical instruments provide vivid demonstrations of group velocity. The
lower notes on a piano, for example, use two strings tuned to the same fre-
quency (or “‘pitch'). When the piano is out of tune, different frequencies —
fairly close together — are sounded when the note is played. These produce
an evident group frequency or “*beat,”” asitis called. Ifw, is faster than about
1 cps the beat will be offensive to the ear.
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differ. If the waves are precisely the same, we will detect no beats.
The beats (if they occur) will be of the frequency
Ay = 2l (4.59)
2
where v, is the frequency of the incoming wave and »; the frequency
of the wave we are measuring.

The time required to observe one beat is 1/Ay — the period of
the group frequency. To be confident of observing at least one beat
we must make a measurement over a time At equal to at least the
time for the occurrence of one beat,

1
|At| > 1—:\‘;' (4.60)

Thus the longer we wait to observe a beat, the smaller is the uncer-
tainty in the frequency. Therefore,

At Av] > 1

In time At the wave will have to move through a distance Ax. There-
fore, Ax is the uncertainty in the location of the wave. If wis the
velocity of the wave, then At = Ax/w, so

|Ax Av| > w
But v = w/A, so for small Ay and A\,

wlAX|
k?_

|Ay| ~

Combining the preceding two equations we obtain
|Ax AN > A2

Finally, we substitute de Broglie's relation p = h/\ to get the un-
certainty relation,

|Ax Ap| = h (4.61)

Equation (4.61) is only an estimate, of course. Other methods of
making this estimate lead to more accurate relations. One of
these is

f h

IAXApl > = = — .62

|Axapl 2 5 =~ (4.62)

where # is a modified Planck’'s constant equal to h/27r. However,

the precise value of the uncertainty is not important in subsequent
work.

At this point we have derived an analytical result that sets a
limit on the certainty of any kind of observation. It implies that if we
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increase our certainty of the position of a particle we must also in-
crease our ignorance of its momentum. This required ignorance is
very small —so small, in fact, that it is generally swamped by ex-
perimental inaccuracy. Its value to us lies not in what it says about
the accuracy of measurements but what it suggests about the na-
ture of things.

The uncertainty relation tells us that we can, under no circum-
stances, devise operations to specify position and momentum more
accurately than Eq. (4.62) allows. Our intuitive feeling that definite
positions and momenta exist at any instant for particles is thus
false, because we have no way of giving meaning to this feeling.
Heisenberg has provided much more than a conclusion as to the
measurability of matter. He has established the basis for a principle,
which states, in effect, that questions about measura bility become
meaningless below the level established by Eq. (4.61) or (4.62).
The uncertainty principle allows us to take the view that de Broglie
waves characterize the fact that particles really are smeared in
phase space. They have no definite position and momentum! By thus
removing the intuitive concept of definiteness, Heisenberg re-
moved that last obstacle to a fully quantum-mechanical view of
the world.1!

EXAMPLE 4.2 How small would a particle moving at typical molec-
ular speeds have to be before the uncertainty of its location
reached molecular dimensions?

In accordance with Eq. (4.62) we find that

|[Ax Ap| > Hh— = 5.25 X 10728 erg-sec
T

Typical molecular dimensions given in Table 7.3 are on the order of

1Aor10-8 cm; and the molecular speed of air molecules at normal

conditions is generally within +C of C, where C is about 50,000 cm;,

sec. Thus

(103 cm)(m x 50,000 cm,/sec) > 5.25 X 10-28 g-cm2/sec

so the mass, m, must be at least as small as 10-2¢ g. From Appendix
D we find that this is a little less than the mass of a proton or a
neutron.

If the reader finds this statement a little strong, he is in good company.
There are others (notably Albert Einstein) who have objected to the concept
that the world is ultimately indeterminate.
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1.6

SCHRODINGER
EQUATION

That matter can be interpreted as wave action suggests that a
complete description of matter should include a wave equation for
matter. The conventional wave equation for the displacement, ¥, is
[recall Egs. (4.9) and (4.10)]

1 o2¥

Ty -
E w2 a2

(4.63)

Combination of the de Broglie relations (4.45) gives ¢ = p(Av), but
Av = w. Thus

—p=—& (4.64)

The similarity between the forms of Egs. (4.63) and (4.64) is striking.
This similarity suggested to Schrodinger the means for developing
a wave equation for matter.

MOMENTUM AND ENERGY

OPERATORS

The strategy for capitalizing upon the analogy between Eqgs.
(4.63) and (4.64) is as follows. If the displacement ¥ of a unidimen-
sional wave is expressed in conventional complex form,

¥ = Cexp [i(kx — wl)]

and then differentiated, it turns out that

o hv
—ints =P = p, A,
i ax W\IJ P (4.65)
and
in %\i’ = hy¥ = el (4.66)

Equations (4.65) and (4.66) are faithful to the analogy between
Egs. (4.63) and (4.64). We are thus tempted to make an identification
of the operators —iA(d dx) and iA(a at) with p. and ¢, respectively.

The total mechanical energy, ¢, of a nonrelativistic system
(called the *“Hamiltonian,”” H) can be written

_KE+PE< P .
e = KE + PE = 2~ - U(r)
or
v — 2“’—;1 ¥ U (4.67)
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Replacing p and e in Eq. (4.67) with the operators — A% and iA[d, t),
we obtain for three-dimensional motion (p? = p.2 + p,2 + p:2)
2mUv  2m o
w i at
which is the Schradinger equation for this system. The function ¥ is
called the wave function. Itis interesting that the Schrodinger equa-
tion is not a true wave equation. It is a diffusion equation, which
possesses certain wave properties because of the imaginary co-
efficient of the first-order term. The fact that the Schrédinger equa-
tion is not a proper wave equation is of noimportance, because itis
really a mathematical postulate. Its correctness and usefulness
can only be judged by comparing its results with experimental
observations.

(4.68)

INTERPRETATION OF THE
WAVE FUNCTION

Itis postulated in the Schrodinger equation that the wave func-
tion \W(r, t) provides a complete quantum-mechanical description
of the motion of a particle. But the physical significance of W(r, t) is
rather unclear. The wave-packet concept suggests that the wave
function should be large where the particle is likely to be, and small
elsewhere. The phrase “likely to be" is a consequence of the un-
certainty principle, and it emphasizes the need for interpreting ¥ in
statistical terms. It is, therefore, natural to regard ¥ as a measure
of the probability of finding a particle at a particular position. How-
ever, a probability must be real and nonnegative, and ¥ is generally
complex. It turns out that the probability density function for the
existence of a particle at r and tis the product of ¥ and its complex
conjugate, ¥*.12 Accordingly (recall Sec. 2.2)

j WE Y :] ;\l.ril dv=1 (4.69)
¥ ¥

which is only to say that a particle will certainly **be’’ within whatever
contains it.

By the same token, the spatial average of molecular properties
can be evaluated as

(¢) = / VEpW gV (4.70)
.

The momentum of a particle in unidimensional motion, for ex-
ample, is

) ] v (—m -f")\v dv @.71)
7 ax

12The complex conjugate z* of a complex number z = x + iy, is x — iy. The
product zz* = x? 4 y? is always real and equal to |z 2.



4.7 Quantum State as an Eigenvalue Problem 107

QUANTUN STATE
AS AN EIGENVALUE
1.7 PROBLIM

The Schradinger equation dictates the wave function W which
in turn tells us how a particle (if we can still use the word) occupies
phase space. Before trying to solve the Schrédinger equation, it is
well to reconsider what happens when we solve the simpler uni-
dimensional wave equation for a vibrating string. The solution con-
sists of a Fourier series of discrete solutions — each one of which
describes a discrete standing wave in the string. The Schrodinger
equation also dictates a discrete sequence of standing wave func-
tions — each one of which corresponds with one of the meaningful
energy levels of the particle.

Equation (4.68) will generally yield to a separation-of-variables
solution of the form

W(r, t) = f(t)Y(r)

Thus the equation becomes

72
— ——
umy — 5 w]
Since the left-hand side depends upon t alone and the right-hand
side depends upon r alone, each side must equal the same con-
stant, which we shall call . Thus

L.
> VY = e (4.72)

ury —

and

f(t) = c exp (—i%t) (4.73)

The solution to the equation is then

W(r, t) = cy(r) exp (—f‘f—ﬁ t)

Differentiating this result gives an expression identical to Eq. (4.66)

:’u‘% = el (4.66)
Thus if we are to satisfy Eq. (4.66), the separation constant e must
be the energy.
Our chief concern at the present will be with Eq. (4.72), the
stationary wave equation, or standing wave equation. This equation
and the boundary conditions that we generally impose upon it are
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a Sturm-Liouville system!? for which the separation constant ¢ is
the eigenvalue. A very important feature of this system is that there
exist solutions (in this case, standing waves) only for certain discrete
eigenvalues (in this case, energy levels). Thus solution of the sta-
tionary wave equation for a system will yield the allowable quantum
energy levels for the system.

In some cases there is more than one eigenvalue for each solu-
tion. The physical meaning of this is that a system can occupy an
energy level in more than one way. Such a system is then called
degenerate, and the number of eigenvalues per eigenfunction is
called the degeneracy, g..

Very often Eq. (4.72) is called the Schrodinger equation because
it is used a great deal. Actually it is only an equation for the wave
amplitude .

Problems 4.1 Express the limits of Planck’s radiation law for AkT, hc; very

large and very small. Are these the results that you would expect?

4,2 Fill in the missing mathematics and arithmetic in the nu-
merical evaluations of h and o.

4.3 Verify Eq. (4.42).

4.4 Prove that Einstein's specific-heat law approaches the
limits required of it by (a) the fourth postulate, and (b) the classical
theory of specific heats.

4.5 Solve V2E, = (1/¢2)(0%E,./at?) subject to the boundary condi-
tions given in connection with the development of the Rayleigh-
Jeans law.

4.6 Complete all the steps in the derivation of the Stefan-
Boltzmann law for a two-dimensional space (Example 4.1) and
evaluate g2.

4.7 Calculate the de Broglie wavelength of a mercury atom at
200°C and of a 1-oz rifle bullet traveling 1000 m, sec.

4.8 Rifle bullets weighing 20 g and moving at 45,000 cm, sec are
fired from a distance of 100 meters at a target. If the only errorsin
accuracy arose from the Uncertainty Principle, roughly how much
spread would there be around the center of the bull's eye?

4.9 A perfectly elastic tennis ball is dropped onto another per-
fectly elastic tennis ball from a height of ten meters. If the only
imperfections in the system arise from the Uncertainty Principle,
roughly how many bounces can the tennis ball make before it
misses the lower ball?

13Some important properties of the Sturm-Liouville system are outlined in
Appendix C.
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the application of
(quantum mechanics

The development of quantum mechanics was described from a
basically chronological viewpoint in chapter 4. We found that the
energy of all systems must be viewed as varying in a discrete way
rather than continuously. The partition of energy is thus far more
fundamental than we were led to believe in chapter 3. In chapter 3
we divided energy into discrete levels simply as a convenience to
make possible the enumeration of microstates. Now we have dis-
covered that such a subdivision is, in fact, specified by the wavelike
character of all matter and energy.

Next we explore the quantum partitioning of energy more
fully, using the Schrédinger equation to compute the energy levels
that are intrinsic in a variety of physical systems.

SOLUTIONS OF THE
SCHRODINGER
EQUATION FOR
THREE IMPORTANT

FREE PARTICLE IN A BOX

Suppose that a molecule translates freely in a box. The motion
is free in that no external force fields or intermolecular forces act
upon it except at the walls. The simplest such case would be

109
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unidimensional motion in the interval (0, L) with collisions at the
“walls” (x = 0 and L). Thus the potential energy U(r) is zero in
(0, L) and infinite at x = 0 and L. This potential-energy function
is illustrated in Fig. 5.1(a). Since no wave function can exist where
U— =, ¢ (0)and ¢(L) must both vanish. And since the amplitude
Y should be continuous, it should still be close to zero at x = 0°
and L, where U is zero. We can therefore drop U from considera-
tion and write Eq. (4.72) in the form

nody

-t = e G.1)

with the boundary conditions y(0*) = (L) = 0.
The general solution of Eq. (5.1) is

Y(x) = Asin \ ﬁ, i Bcos \'22_ X (5.2)

Substitution of the first boundary condition gives B = 0. Substitu-
tion of the second one specifies the eigenvalues as
nm? h?
€ = -E—L—zn,,2 or é-—L—,n‘ n.=012, ... (5.3)
We call n, the quantum number, because it specifies the quantum
state. Finally, Eq. (5.3) can be substituted into Eq. (5.2) and the
result substituted into the normalization condition, Eq. (4.69).

L
[ Wldx = 1 (5.4)
J O
or, in this case,
L 2
f A?| sinr(’"’"‘ lax =2 4 (5.4a)
0 L 2
Thus A = 4/2/L and
v =41 sm("’z") no=012 ... (5.5)

The energy levels of translating particles are shown by Eq.
(5.3) to be very closely spaced. Typically Aex ~ h2/m = 0 (1073° erg).
We also find that for a free particle in a three-dimensional cubic
box of volume,! V = L3,

W(x, v, 2) = (%)3'2 sin(w:‘x) sin(-w;_—‘y) sin(zr%—‘-?) (5.6)

2

8my23

and

(n? 4+ ny? +n.?) (5.7)

€E=€t T+ €6 + €& = ;.

IActually these results are not restricted to a cubic shape (see, e.g., Ex-
ample 5.5),



5.1 Solutions of the Schrodinger Equation for Three Important Cases 111

and the quantum state is now given by a set of three independent
quantum numbers (n., n,, n.).

NOTION OF DEGENERACY

A particle in a unidimensional box has one standing wave func-
tion for each energy level. But in three-dimensional translation a
particle's energy is specified by three quantum numbers. For each
possible combination of n., n,, n. consistent with a given value of
ns® + n,2 + n.2, there is a different wave function. There are, in
other words, a very large number of ways in which a particle can
occupy a given energy level.

The number of modes of occupancy of the ith energy level is
called the degeneracy, g:, of that level. Particles are said to be
degenerate when there is more than one mode of energy oc-
cupancy. If there is only one way in which a particle can occupy
each of the energy levels of a particle (i.e., if g; = 1), then we call
that particle nondegenerate.

The fact that higher energy levels might (for some particles) be
occupied in more ways than the lower levels will require important
alterations of the simple statistics developed in chapter 3. We
defer these considerations until chapter 6. However, we make note
of g: in each of the cases that we treat in this section for future
reference.

HARMONIC OSCILLATOR

The vibraticnal motion of a molecule can often be treated as
the motion of a harmonic oscillator. A unidimensional harmonic
oscillator is a particle moving about an equilibrium position
(x = 0) subject to a restoring force F that is linearly dependent
upon x. Thus F = — Kx, where K is the *'spring constant.” Actually
molecular oscillators are usually subject to nonlinear forces. The
linear force law must be regarded as the first term in a series ex-
pansion for the actual law and should be applied only for small
displacements. The potential energy [see Fig. 5.1(b)] for such a
particle is defined for any conservative force field such that

F=-vU (5.8)

Thus, we have, in this case, the scalar relation

U(x) = —[ Fax = X2
Jo 2
and the corresponding Schrddinger equation is
_ndy (E{ A W
2mdx "\ 2 ‘)‘* -0 .9

The boundary conditions are Y(+«) = Y(— =) = 0.
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Fig. 5.1 Potential-energy functions for three kinds of unidimensional

motion.
To oo Toee
A A A
U [é
x=0 x=L x 0 &

(a) Particle translating freely in a unidimensional box (b) Displacement of a linear harmonic oscillator

Tores

(¢) Particle in a central field subject to a Coulomb interaction

Under the substitutions
B = 2 ¢ and ol = —

Eq. (5.9) becomes

P 18— (axPl =0

dxz
This can be further transformed using
_,.‘1‘;'2
§=a'2x and ¢ = Q()exp (-2—)

where the exponential factor will satisfy the boundary conditions.
The result is

£Q_,.d0 (B _ _
e (a 1)o_a (5.9a)
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RIGID ROTOR

Equation (5.9a) is the Hermite equation. Its solutions can be
shown to exist only when the eigenvalues are

(’L—i—l)=2n n=0,1,2,... (5.10)
[

The solutions are the Hermite polynomials,

"

Hq(.ﬁz) = (_ 1)"85: d

pr (e®)

Hence the wave-amplitude functions are

000 = (42 55) “Hiar m exp (- F)

where the lead coefficient has again been determined from the
normalization condition.

The energy levels can be obtained by expressing Eqg. (5.10)
in terms of the original variables, whence

'K 1 K
= | | — = 4 1 — = .
e=(n+ 3)ﬁ\m (n + -)h(zr\m) (5.10a)

The group, (1, 27)y K m, is the angular frequency v of the oscillator.
Thus

e=(n+1hy (5.10b)

This result shows that Planck’'s original hypothesis, given in
Egs. (4.25) and (4.26), is in error to the extent that it omits one-half
quantum of vibrational energy in the ‘‘ground'” or ‘‘zero’’ state.
This residual energy serves to satisfy the uncertainty principle by
hedging a possible statement that the energy at any x =0 is
‘‘known’'’ to be zero.

Consider a molecule of arbitrary shape rotating about its own
center of gravity. If the molecule is diatomic with atoms of masses
my and m> rigidly located a distance ry from one another, then its
moment of inertia | will be

I'= mmare?, (M + m2)

In this case no potential field exists and the Schrodinger equation
for the system is obtained from Eq. (4.72) as

svrgy - 1 9 (cing®¥). 1 % _ 2
(V) = Gine 96 (Sm ’ r}o‘) “sin2 6 d¢? g Gib

The rigidity of the rotor prevents any radial variation of . Motion
can occur in both of the angular directions, however. The energy
(or Hamiltonian) operator [recall Eq. (4.67)] takes the form p?/2m,
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or — (A% 2))V?, in this case, where m, is the reduced mass, mm:
(m; -1+ m:).

Equation (5.11) is a partial differential equation; therefore,
another separation of variables solution, ¢(f, ¢) = P(#)®(¢), must
be used and a new eigenvalue m introduced. The separation gives
the ordinary equations

—— — —md (5.12)

with the periodic boundary conditions #(0) = ®(2x) and (d¥ d¢)y =
(d¥, de)z., and

1 d (. dP\  [2le m?
S_Irl—é p (Sln{?a) T (.ﬁi - Sin? U)P =0 (513)

with the same boundary conditions on P.
The solution for Eq. (5.12) is

¢ = A sin m¢ + B cos mo

The first boundary condition fixes the eigenvalues as m = 0,

+1,+2,.... Then, under the transformation cos § = {, Eq. (5.13)
takes the form
B L dP (e m N\,
1-o) e 2‘(0‘{ . (ﬁ2 . g_E)P -0 (5.13a)

Equation (5.13a) is exactly Legendre's differential equation if m
is integral — and we have just shown thatitis. The corresponding
eigenvalues, the energy levels, then have to be

n? )
€= I+ 1) ! = integer > m! (5.19)
The solutions of Eq. (5.13) are the associated Legendre polynomials,
Pi(¢). They are of the form

1— g2z g |
P(§) = (%,)" E%T:.'.(F - 1)

Finally one can show that the standing wave functions are given by

-

N 2r

e [l 11 1 PSP 5.15
Am + 1)} /" (cos b)e (@)

(This problem is also discussed in relation to the Sturm-Liouville
theory in Example C. 1, Appendix C.)

Our main interest in the preceding standing-wave equation
lies in /, the principal or rotational quantum number. For each value
of I, m can take on any value such that /m < (. This means that
there are 2/ 4 1 values (including m = 0) of m for each /, and 2/ + 1
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possible wave functions for each /. But there is only one energy
e for each /. The system is (2/ + 1)-fold degenerate, or g, = 2/ + 1.
This means that as the energy of rotation increases, an increasing
number of orientations of rotation are meaningful and consistent
with the uncertainty principle.

We should note in this connection that the two degenerate con-
figurations that we have thus far encountered have been two- and
three-dimensional. This is because degeneracy generally arises
out of an increased number of geometrical alternatives for storing
energy in space. Unidimensional motion generally provides only
one alternative, however.

EXAMPLE 5.1 Compare the energy levels and degeneracies of a
rigid rotor in a two dimensional space with those of one in a three-
dimensional space.

In this case the Schrodinger equation is

Y I Y ""_HL]__E
{g [ruzsinf?(}ff(smgaﬂ) A

Under the transformation cos ¢ = {, this becomes

diy
g Bt

ﬁ ge\f/:O

1-)

which is Legendre's differential equation with m = 0. The resulting
energy eigenvalues are

€= 1‘23; il +1); I=integer>0

This differs from the three dimensional result only in that /can take
on all values greater than zero. Since there is only one value of
m in this case the wave function is uniquely specified by [/ alone.
Thus there is only one way the particle can possess a given energy
and it is therefore non-degenerate.

EXAMPLE 5.2 Obtain the degeneracy of a particle translating in
n-dimensional space.
The Schrodinger equation for this situation is
L A 2 L9 2me

ax? dxst ' ax,2 2

Separating variables with ¢ = Il Xi(x;) we obtain
i=1

X!r‘l {!I_: Xﬂn ) Zm(:

X e X n?
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where we have used primes to denote differentiation. This can
be written as

X

X" _[x_ XX 2me:’ o,
X2 X X 72 o

so that the left hand side gives «y = ¥m, wherem; =0, 1, 2, ....
Separating the right-hand equation we find

X" [X"] X X"y 2me B ,]
b : + 57+ 5 — m°my?

% X gl xX. w2 = —a*
Thus a; = wmz, and by induction we see that, a3 = mms, ay = ™my,
., a1 = #m,—1. The final eigenvalue is given by

n=|

2me
Pea w2 Z m2 = 72m,?
PR

i=1

SO

"

)
3

~m
i
o
L]
5
L]
3
ra

By paraphrasing the counting arguments that gave Eq. (4.22)
we obtain the total number of wave functions for all energies up
to a given level as

a2

T G
EH-II‘ . 1
? (2 | 1)
For large m, the degeneracy can be approximated by the deriva-

tive of this with respect to m, or the rate of change of number with
the principle quantum number:

(]

"

gm s n“" m"_l
21'(,)
2
Thus for unidimensional space, g, = unity; for three dimen-
sional space, g.. = mm? 2; etc. It is true in general that the
degeneracy increases as the n — 1 power of the principal quantum

number in any configuration since each additional degree of
freedom adds additional ways in which energy can be stored.

Before returning to the problems of statistical mechanics it
will help to complete our historical description of quantum me-
chanics with a brief look at the quantum description of the hydrogen
atom.
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5.2

HYDROGEN-ATOM
PROBLEM

ENERGY LEVELS OF THE
ELECTRON IN A CENTRAL

FIELD

The third major application of the evolving science of quantum
mechanics was made by Niels Bohr in 1913. Bohr employed the
early quantum mechanics of Planck to explain the emission and
absorption of radiation by the hydrogen atom. His explanation
provided us with a remarkably understandable and compelling
model for atomic structure. Crude as it was in some respects, it
gave almost exact results. In this section we work the hydrogen-
atom problem in reverse, looking first at the more correct descrip-
tion given by the Schrodinger equation and then showing how
Bohr's great insight led him through the problem.

The solutions of the Schrodinger equation developed in Sec.
5.1 give quantum-mechanical descriptions of the basic modes of
motion of a particle, the particle might be an electron, an atom,
or a molecule as a whole. In an atom, however, there exist two
kinds of particles: the nucleus, and electrons that are attracted to
the nucleus by a force of electrostatic origin. The Schrodinger
equation can also be used to describe a structured particle such
as this.

The simple hydrogen atom consists of a single electron moving
around the nucleus, and the attractive force is given by Coulomb’s
law as F(r) ~ €2, r>, where e is the charge of one electron, —1.60210 X
10-1? Coulombs and r is the distance between the electron and the
nucleus. This Coulomb interaction can be represented by a poten-
tial-energy function U(r),

duty =
o =~ F0 (5.8a)

In this case the potential energy can most conveniently be called
zero when it is at algebraic maximum (when r = «). Thus, if we
denote the product of e and a proportionality constant as Ci, we
get [see Fig. 5.1(c)]

U _f Fdr - Cr' (5.16)

The Schrodinger equation (4.72) can then be written for the electron
as

LR G\, -
5 VY (e r)l'L -0 (5.17)
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where m, is the mass of the electron and the nucleus is considered
to be approximately stationary.?

Equation (5.17) will yield to a separation-of-variables solution,
(0, ¢, r) = Y(0, $)R(r). The result is a pair of equations for Y and
R. The equation for Y is of the same form as Eq. (5.11), and its
solutions are of the form of Egs. (5.14) and (5.15). The equation for

Ris
l1d dR 2m, G I+ 1),’:3]
Seeiliill (% Theal ) =t = _ AT AN —
."%fr(‘r dr)+ f:2|}+ r 21 il

The solution of this equation? gives

o _2_ in—1—1Hpe __""_V, 1 2+
RN = [(nao) 2nl(n + {)”3] exp( > )W 27w

where the L7!;'(W) are the associated Laguerre polynomials,

n—=I-1

51y ERTI [(n + D'PW*
Leti(¥) {;J <D (n—1—1— KN+ 1+ k)& (28
and
2
aQ = n and W= 2 r
m.C naop
The energy eigenvalues are given by
o m,C13
=~ 5 (5.19)

where the negative sign of the energy has been included to signify
that work must be supplied to pull the electron completely away
from the nucleus.

The positive integer n is called the principal quantum number.
Foreach n, /can vary from zero to n — 1 as indicated in the summa-
tion limits in Eq. (5.18). For each [, the quantum number, m (which
enters through the Y contribution), can have any one of 2/ +1
values, as we noted in the arguments following Eq. (5.15). The total
degeneracy g. of the wave function corresponding to a given energy
level ¢, is then

n—1 n=1 n—-—]_ n—l
{_Z”(Zf-i-l)=|-_221]-rn=2|:(n=1)( - )ﬁ_. > ]n

=0

or
G = n? (5.20)

21f the slight motion of the nucleus is to be considered, the Schrédinger
equation will be unchanged, but m, should be replaced with the reduced
mass, m, = m.m, (m, 4+ m,), where m, is the mass of the nucleus.

‘Details of solution are given in, for example, L. |. Schiff, Quantum Mechanics,
2nd ed., McGraw-Hill, Inc., New York, 1955, sec. 16.
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Since emission or absorption of radiation results from a change
of energy levels, the frequency of light emitted when such a change
occurs between the two principal quantum states, n = a and
n = b, is given by the de Broglie relation,

&— & 2mtm.C2? [1 1
vap = T = TS (b2 - ;1) (5.21)
The wave number* k,; of such emitted light is
ven  2mim,.Cit (l 1 )
kp=—=—"|=—= )
. o oh i (5.21a)

The above expression is in agreement with the experimentally
established formula,

n- m-

Ko = R(% = i) (5.21b)

where R is the Rydberg constant. The original value of R given by
Rydberg in 1890 was 109,720 cm . Rydberg obtained this value and
Eq. (5.21b) from the earlier experimental investigation of Balmer,
who observed the series of spectral lines for atomic hydrogen.
This series is now known as the Balmer series. Rydberg's original
value of Ris in remarkably good agreement with the value (109,737.3
cm ') obtained from the preceding quantum-mechanical ex-
pressions.

BOHR'S THEORY OF THE
HYDROGEN ATOM

In keeping with Planck’'s elementary concept of energy quanti-
zation, Bohr assumed that the electron in the field of a hydrogen
nucleus was allowed to move only in certain discrete circular orbits
around the nucleus. The electron was assumed to radiate no
energy while it was in these allowed orbits.

The circular orbit of the electron in the Bohr atom is depicted
in Fig. 5.2. Bohr made two assumptions relative to the orbits. The
first said that energies of neighboring orbits were spaced in ac-
cordance with Planck’s hypothesis,

Ae = hy

The second said that the least increment of “‘action’’ in one orbit
should be Planck's constant. Thus

p(2wr) = nh or m.r = nh n=12,... (5.22)

*Here we are defining k as (frequency in cycles/second)/speed. Elsewhere
we have defined it as (frequency in rad/sec)/speed. The two k's differ by a
factor of 2= and both are in conventional use. With the exception of this
application, k is expressed in (rad/sec)/speed in this book.
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Fig. 5.2 Bohr hydrogen atom.

U oorp o= om

The latter condition can be used with the classical force balance

G (V_)
2 =m . (5.23)
to eliminate the velocity v. The radius is then
_ (nf)?
r= mC (5.24)

The sum of kinetic and potential energies of the electron is
given by

G (_o\__a

e = KE + PE_Zr ( r)— o

where Eq. (5.23) has been used to express kinetic energy in terms
of Ci. The substitution of Eq. (5.24) for r then gives

o = —2eCe (5.19)

252

2n3n?

which is exactly the result obtained from the Schrddinger equation.
The frequency of the radiation emitted is given by Eq. (5.19)
and Ae = hy,

_e—& _2rmC? (1 1
o = 8 2 (b3 a:) 5.21)

which is also the result obtained from Schrodinger's equation.

For frequencies that are close to one another le.g., nand (n + An),
where n >> An] this becomes, to a very close approximation,

47im.Ci2 An

= ——— 5.21c

v (nh) (5.2le)

The simple Bohr theory indicates the existence of an infinite

number of discrete electron orbits characterized by the quantum
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number, n. As the quantum number is increased, the radius of the
orbit as well as the energy associated with the electronisincreased,
as indicated by Egs. (5.24) and (5.19). Since for a free electron
r— « and e = 0, the energy given by Eq. (5.19) can be regarded
as the work needed to remove the electron from the state n to
the state infinity, or the jonization energy from the state n.

For a heavier atom of nuclear charge Ze* with Z orbital elec-
trons, the electrons are distributed among the various orbits ac-
cording to Bohr's theory. The electrons will occupy the states of
lowest allowed energy or the orbits of least n and least radius. It
is found from a more advanced consideration that there exists an
upper limit for the number of electrons in a given orbit. For the
first four orbits (n = 1, 2, 3, and 4), the limits on the number of
electrons are 2, 8, 18, and 32, respectively.

CORRESPONDENCE
PRINCIPLE

The above quantum-mechanical results from the Schrodinger
equation and the hybrid theory of Bohr can be used to demonstrate
an important general principle called the correspondence prin-
ciple, put forward by Bohr in 1923. The principle states that a
quantum-mechanical result must reduce to the result of the corre-
sponding classical calculation in the appropriate limit.

For a hydrogen atom the difference between energy levels at
large quantum numbers is small enough that the discrete quantum
energy distribution can be approximated by a continuous energy
distribution that is classical in concept. Thus at large quantum
numbers the frequency of light emitted, according to the corre-
spondence principle, should be in agreement with the classical
result for the frequency of revolutions of the electron in orbit.
This may be illustrated by using Eq. (5.22) to eliminate h from Eq.
(5.21c):

__mC?
Y 2a(mevr)?

But Eq. (5.23) can be used in turn to eliminate Ci,

v
v = 7 An
n 2‘]-r

-

where v, r is the angular velocity. When An is chosen as unity the
frequency of emitted light becomes exactly the angular frequency
of rotation of the electron. This is what a purely classical view
would lead us to expect.

We use the correspondence principle implicitly in the following
two sections. Each time we compute a partition function we then
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show how, in the appropriate limit of high temperature, the
partition function approaches its classical limit.

EXAMPLE 5.3 Calculate the radius of a Bohr electron orbit for
which n = 100 and check the validity of the correspondence prin-
ciple at this quantum level.

The radius is given by Eq. (5.24) in terms of C;, but C, is given
by Coulomb’s law:

C ke-e
force = = = —
r? r

C1 = k.e?

where k. is identically unity in cgs units, and the charge e, on an
electron is 4.8030 x 10-'? esu. Then from Eq. (5.24) we have

;o () (100)2(1.0544 x 10-27)2
" mie?  (9.1085 X 10-25)(4.8030 x 10-10)2

which is on the order of the mean free path at standard conditions.
This is quite a large orbit.

Now to make a comparison with Bohr's correspondence prin-
ciple, let us first compute \,., for two cases: one in which the elec-
tron drops from level 101 to 100 and one in which it drops from
level 103 to 100. From Eq. (5.21b) and k = 1,\, we obtain

1 1 1
Ato1;100 = W/ (FD? — 101-’) = 4,56 cm

=5.29 X 1075¢cm

and

1 1 1
Ato3;100 = W/(@ — i033) = 1.63cm

From the correspondence principle we can note that A = ¢, »
and obtain
\ . Zztmlzv\;r}
fan et An

but from Eq. (5.22), vr = nA m., so

N L
& Y et An
Thus
Aioos 101 =
2r(1.0544 x 10-27)3 100’
£ 1010Y - Db L e
(29979 X 10 (5 1085  10-29)a.8029 x 1010y¢ 1~ 57 em
(
and

1
'\Iﬂi'.]ﬂ() = g;\]u[};un = 152 cm
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The quantum level 100 is therefore sufficiently high that the corre-
spondence principle gives good accuracy.

Actually we should note that at this quantum level the radius
of orbit is exceedingly large, and the additional energy required
for complete removal of the electron,

1\* m.e?
Fdr= —-93(— ==
r r nEht et n h'

is negligibly small by virtue of its dependence on n” 2. Thus such
large orbits are highly unstable with respect to complete removal
of the electron, or “ionization,” and we would expect them to occur
very seldom.

EVALUATION OF

THE PARTITION
5.3 FUNCTION
QUANTUM-MECHANICAL
PARTITION FUNCTION

In chapter 3 the classical partition function was shown to be
the generating function for thermodynamic properties. Now we
have the tools with which we can return to its evaluation.

The partition function is the sum of exp (—e, kT) over all pos-
sible states that a particle might assume. Within the framework
of quantum mechanics, there are g. possible states that have
energy ¢,. Thus we must sum over g; exp (—e, kT) instead of just
exp(—e, kT),aswedidin Eq. (3.19):

€
Z = ;Jg, exp (—-ﬁ) (5.25)
We obtain Eq. (5.25) in a formal way in Sec. 6.1 from quantum-
statistical considerations.

The partition function shown here can also be decomposed
into factors on the basis of the Schrédinger equation. When par-
ticles are independent, as they are in an ideal gas, it is possible to
show® that the Schrddinger wave equation for one particle can be
separated into independent wave equations. One characterizes
the translational motion of the particles; the other characterizes
the internal motions of the particles.

One consequence of this is a direct result of the multiplicative
law of probabhilities, which states that the probability of a set of
independent events occurring is equal to the product of the prob-

SSee, for example, J. L. Powell and B. Crasemann, Quantum Mechanics,
Addison-Wesley Publishing Company, Inc., Reading, Mass., 1961.
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abilities of each event in the set. In accordance with Eq. (4.69), the
wave functions are multiplicative,

J’ = ';/l‘i’int

because the J/*'s are to be interpreted as probabilities and the
wave functions for translation ¥, and for internal motion .., are
independent.

The other consequence of this independence relates to the
energy of the particles. We have

€= €jk.r. = € T €+

each of which might be degenerate. Accordingly, there are g,
ways for the particle to possess energy ¢ and g, ways for it to
possess energy ¢,. As long as ¢ and ¢, are independent,® for each
of the g, ways in which ¢, can be stored, there are g, ways in which
¢; can be stored. There are therefore g.g, ways in which both ¢
and ¢; can be specified simultaneously. The sum over states, or
partition function, then becomes

€ €;
Z=2. 99, exp (_k_T) exp(—k—f)- =

And by virtue of the independence of g, and ¢ upon any other g
and e,

€ €
Z = Z g. exp (—ﬁ.)gg}. exp (_ﬁ) .
so that
=22 - (5.26)

Equation (5.26) will make it possible for us to compute the
partition functions for the component modes of energy storage
and to multiply them together to get the partition function for a
structured particle. With this in mind we proceed to calculate
partition functions for some component modes of storage.

FREELY TRANSLATING
PARTICLE

The partition function for a freely translating particle in a
rectangular box of dimensions (a, b, ¢) is given by

Z, = Z g. exp (—;—T) (5.25a)

“Usually they are. For a translating particle, for example, ¢, and ¢, have to be
independent to satisfy the principle of equal a priori probabilities. The rota-
tional and vibrational modes of energy storage are also generally inde-
pendent of translation and frequently independent of each other.
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where g;, the number of ways of choosing the numbers ny, n,, n:,
is simply unity. Using Eq. (5.3) fore, resultsin

h? (n2 n2 n?
Zi= 2, exp [_Smkr(ﬁ et E-?)] (5.27)

Before trying to reduce this to a more compact form, let us
look at the quantity ©, = h?/8mka?. For a hydrogen molecule in
al-cm?*box,a=b=c,

h? (6.62 > 10727)?

9, = -
O = gmka 8(3.3 X 10-24)(1.38 x 10-16)(1)2

=12 x1074°K

The quantity ©,, the so-called ‘*‘characteristic temperature for
translation,”” provides an indication of the closeness of quantum
spacings. Figure 5.3 shows how these extremely close spacings
expedite the evaluation of the partition-function summations.
When 0, << T, Eqg. (5.27) can be written

9, ), -,
Z, = Z exp (—E? n_\-ﬁ) exp (——;_ nﬁ) exp (—% n_.f)
- ("):
~ —_—n.2
J'n exp ( T Ny ) dn.
- 0, e,
fo exp( T n, ) r:a‘n,f0 exp( T n: )dn:

o

These integrals are easy to evaluate becausef exp (—x2) dx is
]

well known and equal to =, 2. The result for Z, is
T \32 V. [(2wkT\*?2
are (4_0_) T (h m)s(?) (5:28)

Fig. 5.3 Partition function for a gas with a low characteristic temperature

A

exp |-{(—>;,|"Tm(2|

Quantum number
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where the product (abc) has been characterized as the volume
V of the box.

The approximation that has been made in writing this result
will be valid as long as the temperature is greater than 1014 °K.
It will be valid for still lower temperatures in the case of heavier gases
in smaller boxes. The quantum jumps in the energy of translation
thus prove to be so small that we can forget quantum behavior in
virtually all real situations. Equation (5.28) is almost the same as
Eq. (3.33) —the result at which we had to stop for lack of ability
to specify the velocity cell size AQ. The only difference is that the
cell space is actually specified in Eq. (5.28). Its value is

AQ -
v

or Ar = (M AQV = k3 (5.29)
Equation (5.28) illustrates the validity of Bohr's correspondence
principle, in that it is the same as the classical partition function,
Eq. (3.33), and it is the limit reached by a partition function, Eq.
(5.27), at "'high'’ temperature.

In the preceding case Z, was obtained for translation in three
dimensions by using, in essence, Eq. (5.26). The degeneracies of
the component translatory energies were unity, so the particle was
considered to be nondegenerate. It is also possible to evaluate
Z, by considering the translating particle to be degenerate and by
using Eq. (5.25) directly. To do this we must describe ¢ with a single
quantum number,

h?
8mlL?

€ = n? n=20,12... (5.3a)
The degeneracy g, can be shown to equal wn2,/2 by counting all of
the quantum states consistent with any n = (n.2 + n,2 + n.2)!2,
It is left as an exercise (Problem 5.11) to do this with the aid of a
Rayleigh-Jeans counting scheme and to verify that Eq. (5.28) still
results if we consider a translating particle to be degenerate.

EXAMPLE 5.4 In the study of dense gases, Sec. 9.1, we define a
thermal de Broglie wavelength A as

\ = R2 1/2 (Vls
_(Zm—kr) N Z)

Explain why this quantity is given this name.
From Eq. (5.7) we have
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But ¢ = me2/2 = p2,2m, and in accordance with the de Broglie
relation, p = h/A. Thus

S0

Thus Ais defined in such a way that

n
A= 27173 A

Thus A is proportional to A\, and 1/A3 is on the order of the
partition function for a volume equal to A\3.

LINEAR HARMONIC
OSCILLATOR

The linear harmonic oscillator is the second of three typical
modes of microscopic motion that we shall want to have at our
disposal subsequently. In this case, ©),, the characteristic tem-
perature of vibration, is far higher — on the order of 10° °K. One
cannot pass from summation to integration at temperatures in
the range of practical interest. It is not necessary to do so, how-
ever, because in this case the partition function can be summed
exactly.

The partition function constructed from the energy given in
Eq. (6.10b) is

Z, = Z exp [—%(Zn + 1):] (5.30)

=1

where hy/k = O,. Equation (5.30) can be expanded,

o) e (-2) om(2) ]

and summed. We recognize that the bracketed term is in the form
of a binomial expansion. Thus the vibrational partition function
becomes

7 - exp (—0,,2T)
Y 1—exp(—0,T)

When the top and bottom have been divided by exp (— ©,/2T) this

Z, = | 2 S.““ ((__).") | (531)
' 2]
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RIGID ROTOR

Although Eq. (5.31) is continuous, it is not the same partition
function that would be obtained from a purely classical computa-
tion. Consider the value of Z, as x = O, T becomes small:

= (e\l_ e 2)—I .

[ETC RSN,

At high temperature only the linear terms in x contribute, and

I >

Ze—x 1 = L
=),
or
k
Z,— h_i- (5.32)

In Sec. 5.4 we see how to obtain this using a strictly classical com-
putation (see also Problem 5.14).

The energy levels for the rigid rotor were given by Eq. (5.14),
and the degeneracies of the energy states were shown to be (2/ + 1).
A tacit assumption was made but not mentioned when we did this:
The ends of the rotor were assumed to be distinguishable from
one another! If this were not so, the degeneracy would have been
lower than we computed. The reason for this is shown in Fig. 5.4.
Here a diatomic molecule whose ends can be distinguished from
one another by virtue of nuclear spin occupies its orbit in two ways.
Without nuclear spin these states would be indistinguishable and
could only be counted as one state.

We delay a more detailed consideration of this problem until
we take up the diatomic molecule in chapter 7. For the moment
we regard the ends as distinguishable and write the partition
function as

Z -3 @+ Dexp [—%] (5.33)

Once again we wish to develop the limiting value of this sum.

Fig. 5.4 Two ways for a rigid rotor (whose ends are distinguishable by virtue
of nuclear spin) to occupy the same energy level.

iy e I St et
<Y Y
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Changing variables with x = /(/+ 1), dx~(2/+ 1) &/, where &/ is
taken as unity leads to

( b2
e ) exp [—x m):l dx

P 8w2kT 2IkT T
TR Ao,

or

(5.34)

where the characteristic temperature, ©, = #2,/2/k. It can be shown
that Eq. (5.33) can be summed and put in the following power-
series form:

"TO LT T3T TB\T) T3\T) "

This approaches Eq. (5.34) rapidly as T exceeds ©,. However, 0,
generally assumes values between 2 to 100°K, so Eq. (5.34) is valid in
much of the range of practical interest.

RELATION BETWEEN
THE CLASSICAL
AND QUANTLUM
PARTITION OF

5.4 ENERGY

The replacement of summations with integrals in the preceding
section had a significance that ran deeper than mere arithmetic
convenience. The approximation is one that becomes legitimate
only when the classical or nonquantum description of matter be-
comes accurate. Let us illustrate this in the following way:”

Consider a particle to translate in a one-dimensional box of
breadth, a, as illustrated in Fig. 5.5. The energies of two adjacent

statesare

4T 8ma? and &= 8maz
so that

(h+1)—n= 2a(\2me — \Z2me2)

h

The area of the shaded portions of Fig. 5.5, which represents the
least possible uncertainty as to the location of the particle in phase
space, is

2(a)(\2me; — \2me2) = h (5.35)

"This explanationis similar to one offered by G. S. Rushbrooke in Introduction
to Statistical Mechanics, Oxford University Press, New York, 1962, chap. IV.
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Fig. 5.5 Particle translating in a one-dimensional box.
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Equation (5.35) can be recast in terms of velocity-position space,
using e = mu?/2,

2a(u; — w) = % (5.35a)

The result given by Eq. (5.35) can be generalized for more
dimensions: The classical surfaces of constant total energy in phase
space, which correspond to the energies allowed by quantum theory,
subdivide phase space into units of h", where n is the number of spatial
coordinates.

Thus the partition functions that were obtained from integrals
in Sec. 5.3 could have been obtained in a more general way. For
®), << T, we have, from the definition of integration,

hr Z exp (— ;:_r) ~ j exp (— ;—T) dr (5.36)

where the argument of the summation is now energy instead of
number (n =1, 2, ...). The spacing is therefore h instead of

Z-.-_[exp(_-..__)dr (53?)
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but dr = dV(m"d®), so

m\" €
Z = (E) fexp (_k_T) didi (5.37a)

The integration over r is at least sixfold in three-dimensional
space. Foratranslating and rotating ““dumbbell’”’ molecule it would
consist of 10 coordinates: 3 Cartesian, 2 angular, 3 translational
momentum, and 2 rotary momentum. In this case n would still be 5.

The total energy e will be recognizable to the reader who has
studied dynamics as the Hamiltonian. Equation (5.37) was first
developed by J. W. Gibbs on the basis of purely dynamical con-
siderations. The fact that the factor h * did not appear in his
formulation only meant that he had to remain ignorant of an addi-
tive constant in the entropy and free-energy functions. Since
Z appears under the derivative of a logarithm in the energy, pres-
sure, and specific-heat functions [recall Egs. (3.22) to (3.25)], this
factor left these functions unaltered. Gibbs named the integral
in Eq. (5.37) the '‘phase integral.”” With the factor of A" included,
it is called the ‘““modified phase integral.”

It might be disturbing at first glance that the degeneracies do
not appear in the phase integral. This omission is treated fully in
more advanced texts. For our purposes it must suffice to point out
that the degeneracy ceases to have meaning in a classical de-
scription. There is no walling-off of discrete energy levels. And,
although we moved to the phase integral from a quantum-me-
chanical description, we have actually reached a result that would
have been directly obtainable by strictly classical means.

Degeneracies do not properly belong in the phase integral.
When the integral is formed directly from a degenerate partition
function (as we have done) instead of from the Hamiltonian of the
particle, the degeneracies are absorbed in the integration so as to
give the same result as a direct formulation of the phase integral
would. This happened in the derivation of Eq. (5.34) (compare
with Problem 5.10), and it also happened when we derived Eq. (5.28).

The phase integral also possesses the important multiplicative
quality of the partition function. As long as the Hamiltonian is a
linear function of the energy we can write

1 _& / (_i)
Z= h"fexp( kT) dx; dp;i exp KT dx, dp;

7 = BT - (5.26)

ar

just as we did for the degenerate partition function.
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EXAMPLE 5.5 Suppose we first express the energy of a translating
particle in spherical coordinates. Then let us see how we could
compute Z, for the particles in a sphere of radius R using this
expression.

The energy of a particle is (p.2 + p,2 + p:2) 2m, where p., p;,
and p. are Cartesian components of momentum. Now, with refer-
ence to Fig. 2.3, suppose that we rotate an (x, y, z) coordinate frame
until x aligns with r, represented in a spherical coordinate frame.
It would follow that

dx = dr dy = rdb dz = rsin f d¢

Thus if the components of any vector, say p, are to be equal in
both frames,

B Pi _ Py
P«=P  Pr=7 P = sine

SO

p2 4 p?tp2 P2+ (p/r?) + (pA sin2 )
€ = 5 = > (5.38)

To evaluate Z, we now use Eq. (5.37) and replace e with the right
hand side of Eq. (5.38),

z, =
1 [ _pi_ Pt P2
Eiﬁ[ff_/'/jexp (-& _r?{gT___nr:_ﬁ_iﬂlBkT) dx cly dz dp. dpy dp:

2m _

——
over F.oand all p

but dx dy dz = r? sin 8 dr df d¢ (recall Fig. 2.3 and context) and
dp. dp; dp: = dp. dpsdp. r*sinf, so

T e

PP P
( kT  r2kT r-‘smﬁ(fk_T_) dr a6 d dp- dps dps
2m
_ _l Qf‘-_R‘ 3/2 - 27.'!7'.'_3_(_?_' i
s @EmkTy 2 = v( . ) (5.28)

It turns out that this result is independent of the shape of the
volume that contains the particles for which we are computing Z..
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Problems

5.1 Verify Egs. (5.6) and (5.7).

5.2 Draw, in the two-dimensional phase space of an oscillator,
the classical paths corresponding to the quantum-mechanically
allowed energies. What is the “‘volume’’ of the cells into which
these paths divide the space? What is the physical meaning of this
result?

5.3 A string is tightly stretched between two supports. The
string is struck, and the displacement travels along the string.
Write the one-dimensional Schrodinger equation for this system.

5.4 Determine the quantum energy level for a linear harmonic
oscillator for which there exists a constant potential energy at the
equilibrium position.

5.5 Find the energy levels of a particle moving in a potential
field of the shape U(x < 0) = «; U(x > 0) = Ax2.

5.6 Complete the steps in the derivation of the expressions for
¥.(x)and e, for a harmonic oscillator.

5.7 Complete the steps leading to Eq. (5.15).

5.8 Complete the steps in the derivation of the standing-wave
function for an electron in orbit.

5.9 Nothing was said in Sec. 5.2 about the possibility of elliptical
electron orbits in the Bohr atom. Prepare a discussion of the
quantum description of elliptical orbits and show how Eq. (5.21b)
must be modified for more complicated atoms.

5.10 Use the modified phase integral to compute the partition
function for a rigid rotor directly from the classical Hamiltonian.
Compare your result with Eq. (5.34).

5.11 Compute Z, for a translating particle using one quantum
number to characterize the energy and regarding the particle as
degenerate.

5.12 Determine the molecular distribution functions for trans-
lating molecules with both three and one quantum numbers.
(Note that in one case you should obtain a velocity distribution,
because three components are specified. In the other case you
should obtain a speed distribution.)

5.13 Derive an expression for the pressure exerted by an
isothermal atmosphere, as a function of elevation, using the
modified phase integral with a Hamiltonian that accounts for both
kinetic and potential energy of particles. Compare your result with
Example 3.2.

5.14 Use the modified phase integral to obtain the partition
function for a linear harmonic oscillator.

5.15 Calculate the internal energy of an ideal monatomic gas
enclosed in a cylindrical vessel of radius R and length L rotating
about its axis with angular velocity w.
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5.16 Using the anharmonic potential energy, U(x) = cx? —
gx3 — fx*, show that the specific heat of a classical anharmonic
oscillator is given, to first order in T, by the approximate relation

3f  15g2
G ivkl:l +- (é; -+ 'é*g') kT]

Note that g and f characterize small corrections to otherwise
harmonic motion.
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FERMI-DIRAC AND
BOSE-EINSTEIN
DISTRIBUTIONS
AND THEIR

6.1 CLASSICAL LIMIT

ROLE OF

INDISTINGUISHABILITY

AND DEGENERACY

We now return to the problem that we left in Sec. 3.5 — that of
formulating distribution functions for particles. The problem is
changed in two ways when we take a quantum viewpoint toward
matter and energy.

First, the uncertainty principle requires that we abandon the
concept of distinguishability except in certain restrictive cases.
To determine whether or not particles are distinguishable we ask:
Is it possible to conceive of any operation that would determine
whether or not two particles have been interchanged? The answer
to the question could only be yes under special circumstances.
If, for example, the particles are localized by virtue of being located

135
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within a crystal lattice, then we must specify, a priori, that they
cannot be interchanged. Localized particles accordingly have
identity by virtue of position. Figure 5.4 also illustrates how oppos-
ing nuclear spins might serve to distinguish two nuclei in the same
molecule from one another.

The second change in the statistical problem is introduced by
the degeneracy of the energy levels of particles. If the higher
energy levels are possessed of increasing degeneracy, then these
states will also be possessed of increasing statistical weight. The
lower energy levels will not be as highly favored as they are in
nondegenerate distributions.

THERMODYNAMIC
PROBABILITIES FOR
THREE CASES

Three particular situations will be of subsequent interest to us.
Each will have a slightly different statistical description.

1. The particles are distinguishable (e.g., they might be localized)
and the degeneracies g;, may or may not all be equal to one another.
The number of ways of arranging particles for a given macrostate
can be determined as follows. We have already seen that there are

N! aH N;! ways of arranging the particles into the various energy
[i=0

levels. But it is also possible to rearrange the N; distinguishable

particles within the g; distinguishable quantum states at this level.

This number of rearrangements is given by Problem 5, Sec. 3.2,

as g;Vi. Itfollows that

W= wy = [ 92

=05 (6.1)

where the subscript B evokes the similarity of this probability to
Boltzmann's thermodynamic probability.

2. The particles are indistinguishable. The number of ways of
arranging N, indistinguishable particles in g; distinguishable ways,
atany energy level, is given by Problem 4,Sec. 3.2, as (g + N; — 1)!/
(gi — 1)IN;!. Thus the number of ways of arranging the corre-
sponding macrostate is

7 (9 + Ni— 1)

W= Wge = ;I=l} (Q(‘g‘. _ 1}!Ni[)

where the subscript BE anticipates the relationship of this thermo-
dynamic probability to Bose-Einstein statistics.

3. Particles are indistinguishable, and no more than one of them
can occupy the ith energy level in each of the g; ways.! There are

(6.2)

IThis, we see shortly, would be true of particles that are bound to obey
Pauli's exclusion principle.
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g.!/Nil{(g: — N))! ways in which the g; quantum states can be divided
into N; that are ‘‘occupied” by a single particle and g; — N; that
are not. Accordingly,

W= Wpp = 6.3
v .I%N'(g,-N)' (0:5)
In this case the subscript FD anticipates the relevance of this result
to Fermi-Dirac statistics.
It is a matter of great convenience that in dilute gases the de-
generacies are largely unoccupied and g; 3> N,. When this is true,

(gi+Ni— 1DV (g +Ni—1)---(gi +1)g). . g:™
G —DiNI - N is slightly > N
and
g.! _gi(gi—1)---(gi — Ni+ 1),
@ = NyINi = N is slightly < N'

And in the limit, as g; becomes much much larger than N;, Eqgs.
(6.1), (6.2), and (6.3) give
WB

Wrp ~ Wpg ~—

Ni (6.4)

DEVELOPMENT OF THE
DISTRIBUTIONS

Distribution functions for particles of the preceding three types
are obtained using the same basic strategy that underlay the der-
ivation of the Boltzmann distribution. The particles must be dis-
tributed in such a way as to maximize the thermodynamic proba-
bility subject to the usual constraints

Z = 3.1

and

-

G;N,' = N
0

m

- U (3.2a)

i

The procedure, using the method of Lagrangian multipliers,
will be the same as outlined in Sec. 3.5. The details will be leftas an
exercise (Problem 6.1), and the resulting distributions will be listed
below.

1. The idea of a hybrid classical-quantum particle — distinguish-
able, yet degenerate —is a useful device. Furthermore, it is not
wholly unreasonable from a physical viewpoint. For example,
particles that occupy fixed positions and have identity by virtue of
their individual locations would properly be described in this way.
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Such particles are called boltzons, or degenerate boltzons. The
distribution of the N,'s for boltzons is

N, = é;%g:_ (6.5)
aor
% = % (6.5)
where
Z = Z{j} gie e (5.25)

Thus Eq. (5.25), which was written down heuristically in Sec.
5.3, is justified by a straightforward statistical development.

2. We next wish to obtain the distribution of the N;'s for the
general case of indistinguishable particles. If no constraints are
placed upon the occupancy of the energy levels, the thermody-
namic probability is properly given by Eq. (6.2). This statistical
method was advanced by S. N. Bose in 1924 and it was applied to the
ideal gas by Einstein in 1924 and 1925. Particles that are governed
by this statistical description are called bosons.

The resulting distribution of the N;'s for bosons is 2

g
N~ e 1 S

3. The Pauli exclusion principle, advanced by W. Pauli in 1925,
requires the development of a third type of quantum-statistical
description. The principle generalizes certain experimental evi-
dence and can be stated in a variety of ways. For our purposes it
will suffice to say that a quantum state cannot be occupied by more
than one such primary indistinguishable particle as an electron
or a proton unless the wave function for the system of particles is
antisymmetric. Photons and phonons, for example, are not bound
by this principle and will therefore be subject to Bose-Einstein
statistics.

A year after Pauli stated this principle, Enrico Fermiand P. A. M.
Dirac independently developed the statistical description that made
use of it. The thermodynamic probability for a collection of indistin-
guishable particles was given by Eq. (6.3) for the case in which only

2Equation (6.6) is derived subject to the usual constraints — Egs. (3.1) and
(3.2). Later in this chapter we encounter applications of Bose-Einstein statis-
tics in which Eq. (3.1) is not imposed. At that time we shall have to develop a
form of Eq. (6.6) in which there appears only one Lagrangian multiplier.
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one particle could occupy each energy state. Such particles are
often called fermijons. The distribution of the N,'s for fermions is

N = —F—— (6.7)

EXAMPLE 6.1 Consider the distribution of personal income in the
United States. In a population of N people there are N, who earn
t; dollars 'yr, N; who earn t;, and so on. The average income is
known to be t. In our present inflationary economy it has turned
out that if a person can draw an income of t,, then the number of
ways in which he can do so is approximately proportional to t.2. We
should like to predict the distribution of income under these
circumstances.

In this case

SN=N SUtN-IN g =At:
i=0 i=10

and the thermodynamic probability is given by Eq. (6.1), because
the incomes (or the people that earn them) are distinguishable.
With the help of Stirling's approximation, we can maximize W:

dinW =3 (In At2 — In N,) dN, = 0

i=0

Combining this with the differential form of the constraints gives
Z (In

Finally, we set the coefficients of the dN,'s equal to zero and obtain

At2

T & T ,ljt;) le =0

N; = Ae t2exp (—3t)

The multiplier 3 can be eliminated by substituting this N, into
the two constraints:

: A a '
N = Aeg = Z t2 exp (—@t) ~- Et/ t> exp (—3t) dt
i=0 1]
or
e
- B At
Likewise,
_ . bAe =
— a 3 -0t = ——
Nt = Ae :E“f, exp (—p3t.) Y,

Solving between these expressions we obtain 5 = 3 t.
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The distribution is then given by
N;  Aet?exp(—3t. 1)

N 24e%/(3/t) At
or, according to Egs. (2.11) and (2.14),

wo-3(en()

This distribution characterizes income between 1946 and 1962 very
accurately. In a depression economy there is less access to in-
come and g, ~ t;!2. This gives a more skewed and less uniform
distribution of the wealth.

CLASSICAL LIMIT FOR
FERMIONS AND BOSONS

Equation (6.4) showed us that if gases are dilute and few of the
modes of energy occupancy are filled, then both the Wi and
Wrn approach® Wy N!

g‘.\',
Wi, Wep — ‘IJJ NI (6.8)
The distribution of N,’s derived from this thermodynamic
probability (Problem 6.2) is identical to Eq. (6.5a). It therefore
follows that, as (N, g)) — 0,

er!l-fr Nut-u' : N:u (69)

ar

g‘ g’ Q;
eets — 1 et + 1 e%e’n (6.9a)

Thus, for (N, g;) — 0, we find that
e’ >>1 (6.10)
This condition can be reduced to

e* > 1 (6.10a)

iSome authors argue that the thermodynamic probability for indistinguish-
able particies can be obtained by dividing Wy by the N! rearrangements that
become meaningless when particles are indistinguishable. Although this
rationale does result in Eq. (6.8), itis in fact not correct, and it makes Eq. (6.8)
appear to be exact. The same rationale carried out fully would result alsoin
eliminating the N,!'s from Eq. (6.8). Accordingly, W, the number of micro-
states per macrostate in a group of classical, nondegenerate, indistinguish-
able particles, would be unity. This result points up the folly of trying to dis-
cuss indistinguishability as a classical idea. Equation (6.8) must be regarded
as the limiting approximation of the quantum-thermodynamic probabilities,
Wge and Wep.
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because the lowest value of e kT, & kT, is always quite small,
Thus if particles are to behave as boltzons,

N = z N‘ — Z g.e et kT
i=0 i=n
or

z
No~— 6.11
e‘. (6.11)
By way of illustration of the implications of this result, suppose
that we introduce the partition function for a monatomic ideal gas,

r T 372
Z, = (5(7,) (5.28)
Inthis case Eq. (6.11) becomes
17 T\32
e" = N‘ (3 (_—):) (6]2)

Equation (6.12) shows that condition (6.10a) will be satisfied for
temperatures well in excess of N236),, Thus monatomic translating
particles can be treated as boltzons only at temperatures vastly

in excess of (), —typically a few degrees Kelvin. Since ), = h?,
8mka?, Eq. (6.12) can also be written in the form
2rmkT\32 V
e = ( e ) N (6.12a)

If we suppose that N V corresponds roughly with the molecular
density at standard conditions in a given configuration, then e«
will be less than unity below 10¢ °K for electrons, 1°K for Hs, and at
much lower temperatures for other molecular gases. This means
that quantum-statistical effects are very important at temperatures
of practical importance in electron gases, but there is little applica-
tion for molecular gases. The ‘‘degenerate ideal gas'’ occupies
what can be a wide temperature range from @, up to e* = 0(1).

EVALUATION OF THE
LAGRANGIAN MULTIPLIERS

In chapter 3, the multiplier 3 was calculated for nondegen-
erate boltzons and the multiplier « was ignored. Now we follow
an argument by ter Haar* that gives both multipliers for all three
statistics.

*D. ter Haar, Elements of Statistical Mechanics, Holt, Rinehart and Winston,
Inc., New York, 1960, chap. 4, sec. 5.
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Equation (6.1) can be rewritten in the form

dinWs = 3 In (%) dN, (6.1a)

i=0

but Eq. (6.5) gives In (g, N.) = a + Be, SO we obtain

din Wy = a Y dN; + 8> &dN; (6.13)

i=0 i=0

It turns out (Problem 6.7) that this is also the case for W, ;- and Wy,

dinWye =dIn Wep=a 2 dN; + 3 Z{; edN,  (6.13a)
i=0 i=

Consider nexta change of energy, dU,

dU = 2 edN, + 2 Nde (6.14)
i=0 i=0
The two summations in Eq. (6.14) represent two fundamentally
different ways in which a system's energy can change. Consider,
first, changes represented by the sum Z N; de;. The change in U
i=0
is accomplished without altering the distribution numbers (the
N.'s). Accordingly, W remains unaltered and the entropy, S =
k In W, is also unchanged. But we already have a name for re-
versible interactions of a system that occur at constant entropy.
Such interactions are called work interactions. Thus we can write

oWk = > N, de, (6.15)
i=0

Equation (6.14) then takes the form

> e« dN, = dU — Wk (6.16)

i=1{

We know from the first law of phenomenological thermody-
namics that the sum of work and energy change is the heat inter-
action of the system. Thus > e dN, = 6Q, and Eq. (6.16) is simply

i=0
a statement of the first law. Thus, if we write W = W, or Wy,;. or
Wy, and substitute Eq. (6.16) back into Eq. (6.13) or (6.13a), we get

dinW = adN + 3(dU — 8Wk) (6.17)
or

dinW = «dN + 3460Q (6.17a)
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If the system is subjected to a change that alters W without
changing the number of particles, we get, from Eq. (6.17a),

kdin W = dS = k36Q (6.18)
But é6Q = T 6S because we are dealing with equilibrium particles

[recall Eq. (1.13)]; thus

B = KT (2.34)

in all three statistical formulations.
To evaluate a« we begin by writing the Helmholtz function,
F = U-— TS, in differential form:

df = (dU — TdS)— SdT
But, from Eq. (6.17),
TdS = kTladN + 5(dU — 6Wk)]
Thus

dF = —‘—;de + Wk — SdT (6.19)
k

The evaluation of « is completed by using Eq. (6.19) to form

the partial of F with respect to N, at constant T, and with all ex-

tensive properties related to work modes held constant. For

simple systems é Wk = —p dV, only, and we have
aF @
Y = —— 6.20
anN \r.v 64 ( )

In accordance with Egs. (1.38) and (1.41) we can write dF = —SdT
— pdV 4+ udN for single-component systems. It follows that
(dF ‘aN); v is the chemical potential u which in turn is equal to the
molar Gibbs function [recall Eq. {1.48)]. It follows that

M I
= —-— —_— 6.21

“ kT or ROT (844
depending upon whether u is expressed as a molecular or molar

quantity. We defer consideration of the physical meaning of this
result until the subsequent section.

MONATONMIC
BOSE EINSTEIN
AND FERMI-DIRAC

We saw in Sec. 6.1 that the quantum-statistical description
had to be used up to temperatures that vastly exceeded ©,. In
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some cases the temperature range 0, < T < N230), will be of
practical importance. We must therefore consider the statistical
description of these ‘‘degenerate ideal gases’ in more detail.

GENERATING FUNCTION FOR
DEGENERATE GAS PROPERTIES

We need to develop a generating function for the properties
of Bose-Einstein and Fermi-Dirac gases. The concept of a gen-
erating function for properties is one that we have followed some-
what carefully up to this point. The Massieu function F T was one
of the classical generating functions that we considered in Sec.
1.5. In Sec. 3.5 we discovered a direct relationship [Eq. (3.27)]
between F, T and the microscopic generating function Z.

For boltzons we can write, in accordance with Egs. (6.5) and
(6.11),

> giexp[—(a+ Be)) = N = eZ

i=0
Equations (6.21) and (3.27) can be used to eliminate « and Z from
this expression, so

In Z[g, exp |[—(«a + p’e,)f} = (“N_%r (6.22)

Equation (6.22) suggests the definition of a new generating
function closely related to the partition function. We call it the
q potential :

ulN — F
kT

q = (6.23)

Replacing —F with TS — U, S with k In W, and u kT with —« in
Eqg. (6.23) permits us to express it in the form,

g=InW-— aN— gU (6.23a)
The derivative of g,
dg=dInW— adN— Nda— Uds— 3dU

can be simplified by combining it with Eq. (6.17). The resulting
differential g potential for a simple system, in which éWk = —p dV,
is

dq = —N da — Udp + ppdV (6.24)



6.2 ldeal Monatomic Bose-Einstein and Fermi-Dirac Gases 145

The g potential is a potential in the sense that the following
derivatives can be generated from it:

N = —(2’9—-) (6.25)
da J g v
(%
U= ({7.\3)“,1' (6:26)
_ (%
8p = ((')V)‘, E (6.27)
And from Egs. (6.23), (1.32), and (1.41) we have
v
q = T (6.28)

We should note that the g potential is, in fact, the Legendre trans-
form function with the independent parameters 1.7, V, and 4 T.

In other words,
pV _ oL, &
T q(T, Vv, T) (6.28a)

as we saw in Example 1.3. The explicit expression forq(1, T, V, u T)
constitutes the fundamental equation and thus contains complete
thermodynamic information for a substance.

In addition to its importance in the evaluation of the properties
of degenerate gases, the g potential is the fundamental macro-
scopic parameter in the grand canonical ensemble theory to be
discussed in chapter 8.

EVALUATION OF THE
PROPERTIES OF THE BOSE-
EINSTEIN AND FERMI-DIRAC
GASES

With the aid of Egs. (6.2), (6.3), (6.6), and (6.7) it is easy to show
(Problem 6.8) that®

In Wi : Z
" | = E ‘ N.-((r I }551) = g: |n (1 + e _I“[) (6'29)
In Win| =0

=10
Using Egs. (6.29) and (6.23a) for the g potential we find that
Quorrp = F 25 giIn (L F e %) (6.30)
Equation (6.30) looks something like a partition function. Like

a partition function it can be put in integral form for T - ©,. This

“In the rest of this section the upper symbol in a ¥ or + sign will refer to the
Bose Linstein case, the lower symbol to the Fermi-Dirac case.
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can be done by writing g; = g.(¢) and noting that in the continuous
limit dg = (dg/de) de, where we view g; as being an increment of
the cumulative number of modes of occupancy, g, up to a given
quantum level. Thus

gBE or FD = 4:f In(1 F e a5 dg de (6.31)

0 de

The problem of getting a continuous functional relation between g
and ¢ is solved by first determining the functional relation between
g and n, then using Eq. (5.3) or (56.7) to express n in terms of e.
The Rayleigh-Jeans arguments that led to Eq. (4.22) can be para-
phrased to show thatif n = yn.2 + n,? + n.2, then

l4r
97873
or
g = ,
dn = 2"
and, with the help of Eq. (5.7),
dg_dgdn _x8mvatel fim v
de dnde 2 h* 2Ne h
Thus
dg -~ 2m 32 -
= 2wv(h3) Ve (6.32)

and Eq. (6.31) takes the form

2m\ 32 R
GREo FD = :F2F(F) v Veln (1 F e %) de (6.33)
- JO

Changing the variable with { = 3¢ = ¢/kT we obtain

32 R
QBEor FD = :sz(ZnEfT) Vfo VEIn (1 Feeed) dt (6.33a)

The integrand can be expanded, because e “et < 1 and the re-
sultantterms can be integrated by parts. Theresultis

2emkT\¥2 <= (e @)
GBEoFD = :!:( ”hmz ) vy &) (6.34)
n=1 N~

Equation (6.34) is the fundamental equation,q = q(1, T, V, u/T),
and the properties of the gas can then be obtained immediately
from it using Egs. (6.25) through (6.28). From either Eq. (6.27) or
(6.28) and Eq. (6.25) we obtain, upon substitution of Eq. (6.34),

Z (£1)yean/nsn?
,DV _on=1 (6.35)

kTN Eor F o
BE FD Zl(:{: l)ue——",' n32
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or, after some algebra,

pV e
kTN BEor FD ST 252 7 e
The ideal-gas constant is therefore subject to a correction for
indistinguishability that is on the order of =e~= or more. Equation
(6.35a) is consistent with our macroscopic definition for the ideal-
gas law, even though the constant changes.
Combining Egs. (6.26) and (6.28) in Eq. (6.34) gives

U= ENRT(I “FEH ) (6.36)

where we only need one term if e > 1 [recall the context of Eq.
(6.12)].

We have now seen that the question of distinguishability of
particles — although it might have first appeared to be a very
subjective question — embodies a very real effect upon ideal-gas
properties once we undertake a quantum description of matter.6
Before leaving the ideal gas we should take brief note of a particular
kind of extreme deviation from classical (Boltzmann) ideal-gas
behavior.

EINSTEIN CONDENSATION
Einstein pointed out a curious phenomenon related to the

Bose-Einstein distribution in 1925. This subsequently received

attention for its possible relevance to the )\ transition of liquid

helium.” Suppose that a Bose-Einstein gas is cocled to a very low

temperature. Since g1, ¢ <€ <---, and e e ..., it

follows that
ai
_ 4 4= Np + Ny +---
;] et D‘!u_ 1 en-rJu — 1 * 0 1+
approaches
go
N~ —_ = 6.37
eai;ftu . 1 NU ( )

The preceding result indicates that there can be a pileup of
particles in the ground state, ¢, at low temperatures. This rapid
increase in the population of the ground state for a Bose-Einstein

5The Bose-Einstein description is, of course, correct for conventional gases,
while the Boltzmann description ditfers from it and is incorrect — even at
high temperatures. Fortunately, the difference is negligible for almost any
temperature of practical interest.

"This matter is discussed by ter Haar, reference 4, chap. 9, sec. 2; ter Haar
also presents a broad bibliography on the subject.
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PHOTON
PHONON

gas is what we call the Einstein condensation. The transition
temperature at which this takes place can be identified. This
temperature is rather like a condensation point and, indeed, it is
found to lie at T = 3.2°K, which is comparable with the observed
M transition for helium, T = 2.19°K.

GAS AND
GAS

The name photon is given to the ‘“‘particle” (or particle-like
qualities) associated with electromagnetic waves and it is pos-
sessed of energy hv. This energy can be occupied in as many ways
as there are standing waves. A ‘‘gas’ consisting of photons is
thus a degenerate Bose-Einstein gas. If Planck's result for the
distribution of radiant energy was correct we should now be in a
position to rederive it by treating photons from this viewpoint.
And we also should be able to evaluate all the other thermody-
namic properties of a photon gas.

The discussion that follows can also be applied to a related
‘“‘particle” called the phonon. As electromagnetic waves travel
through a medium, ‘‘acoustic’” or vibrational waves also travel
through a crystal lattice. And in keeping with de Broglie's concepts,
a particle can also be associated with these waves. Such a
“particle’” is called a phonon. It is also a boson and, in fact, its
description does not difier fundamentally from that of a photon.
The discussion that follows could easily be adapted to the phonon
aswell.

PLANCK DISTRIBUTION

We should recall that Planck envisioned a nondegenerate
assembly of distinguishable boltzon oscillators. These oscillators
were permitted to assume rising energy levels, hy, 2hv, 3hy, . ...
He also assumed that these oscillators were conserved, when in
fact they are absorbed and generated at the walls of their con-
tainer. To rederive the distribution we must first correct Eq. (6.6)
for the removal of the conservation constraint

> N.=N (3.1)

The result, obtained from Eq. (6.2) and the second constraint (3.2)
(Problem 6.12), is

g
| = —— 6.38
N; et AT 1 ( )
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The degeneracy is again obtainable from Eq. (4.22) and again
g: can be viewed as the increment dg of a continuous variable g.
Thus

dno 4z V

where the factor 2 is introduced to account for the two degrees of
polarization,

Equation (6.38) can also be expressed in differential form,
because all the ¢,'s are equal to hv or he, A and the degeneracy can
be thought of as varying continuously with ». Thus

) g
dlis exp (hy kT) — 1

or

dN _dNdg 8rV
d\  dg d\  \exp (hv kT) — 1 (6.39)

This can finally be multiplied by e V or hy/V to give the radiation
density, u, = —(hc; AV)(dN. d)), analogous to Eq. (4.21),

e 8?rC_.'h
» 7 NS[exp (he, AKT) — 1

(4.34)

which was Planck’s result. Although the result is the same, it has
now been developed in a way that is consistent with both the
Schrodinger equation and a fully quantum view of matter.

EXAMPLE 6.2 How many photons are there in a cavity of 1 cm?
volume at a temperature of 300°K?
For a photon gas we can sum Eq. (6.38) over all i and obtain

- g | dg(v)
N = ;_Zu exp (e/kT) — 1 fu exp [e(v) kT] — 1

Az V\ dA 8 WVt c
oI _2( ,\4 )dp i - (— . )(—;) d

N = j 8V vdy M(ﬂ) * Xadx
Jo cf exp(hwkT)—1 ¢ \ h 0o er—1

but

SO
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With the help of Appendix E-1-(e) we find that the integral is equal
to I'(3) - ¢(3) or 2.404. Thus

N = 50.5v(ﬂ)’
hC;

SO

] 3
N =605 x1 cm3( L K) = 5.45 x 10® photons

1439 cm—"*

THERMODYNAMIC RELATIONS
FOR PHOTONS

The properties of degenerate Bose-Einstein gases that were
formulated in Sec. 6.2 can now be reformulated for photons. The
only difference lies in the relaxation of the conservation constraint
(3.1) and the resultant loss of the Lagrangian multiplier, « [recall
Eq. (6.33)]. Thus the g potential for photons can be obtained from
Eq. (6.33) with the multiplier « removed, or

8r\2v [T —
Qphoton = — TI‘;] ] \em In (1 — £ -f() d({-m) (6.33b)
- 0
with the help of the following heuristic argument.
The quantity em in Eq. (6.33b) is bothersome because the rest
mass of a photon is zero. However, if we write em = p? 2 and then
introduce the de Broglie relation p = h, A or p = hy, ¢, this suggests

the equivalence
()
¢ - Z Cy

Substituting this in Eq. (6.33b) and integrating the result with
respect to », we can obtain from Eq. (6.33b) the g potential for a
photon gas (Problem 6.13),

875 (kT
th:\hm == "4? (,‘E) V (6‘330)

The remaining properties of a photon gas can now be obtained
directly. Using Eqgs. (6.26) and (6.28), for example, we can readily
obtain a familiar result from Eq. (6.33c),

U= %G‘.-hum:. 3.0V (4.25)

The same result can also be obtained easily from Egs. (6.27) and
(6.28). So, too, can expressions for the entropy and the constant-
volume specific heat for a photon gas. These simple derivations
are left as an exercise (Problem 6.14).
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The preceding discussion has centered on photon gases.
We have actually described a phonon ‘‘gas’’ problem already in
Sec. 4.3 —the Einstein solid problem, in which we treated the
vibration of atoms in a solid much as we treat photons. This notion
will be carried to greater refinement in the improvements of
Einstein's prediction, given by Debye and others, which make
more accurate and descriptive use of the phonon concept (see
chapter 10).

“"ELECTRON GAS”
0.4 IN A METAL

ELECTRON GASES

The thermal and electrical conductivities of a metallic solid
are the results of the translatory motion of a gas of free electrons
within the solid. The magnitudes of these transport properties
are very great in metals because the velocities of low-mass elec-
trons are very high, and we find a linear dependence of transport
properties upon C in Sec. 11.2. The law of Wiedemann and Franz
shows that the relation between the thermal and electrical con-
ductivities is linear. But if these properties are chiefly the result
of transport in an electron gas, then they should both be propor-
tional to the velocity of the electrons. They should then, in
turn, be proportional to one another, and the empirical law of
Wiedemann and Franz shows that they are.

Since this law was subsequently derived by applying the meth-
ods of kinetic theory to free electrons (see Sec. 11.5), there ap-
pears to be little doubt that such ‘‘gases’ exist. Furthermore,
there is other experimental evidence which shows that the number
of free electrons per atom in a metal is on the order of unity.

The presence of such a gas should rightly add to the specific
heat of the solid. At least to a first order of approximation, such
electrons should move independently of the lattice atoms as a
free gas. Because there are three degrees of translational free-
dom for these electrons as compared with six degrees of vibrational
freedom for the lattice atoms, and because there are about
as many electrons as atoms, the classical equipartition theorem
would lead us to expect the molar specific heat to be around 4.5R°
instead of 3R°.

Table 4.1 reveals that c, exceeds the classical value by far less
than 50 percent at high temperatures. Since free electrons have
to obey the Pauli exclusion principle, a proper description of their
behavior requires the use of Fermi- Dirac statistics. This important
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example shows the way in which a quantum-statistical description
becomes important at much higher temperatures than those dis-
cussedinSec.6.2.

ANALYTICAL DESCRIPTION
OF THE ELECTRON

Itis necessary to learn the energy levels and the degeneracies
of the electrons, and to establish some properties of the
electrons themselves, before trying to predict their behavior.
Experiments show that at room temperatures electrons do not
escape or ‘‘emit’”’ from the surfaces of metals. They are bound in
some way to remain within the solid — at least as long as the tem-
perature remains low.

The following model for the energy of a free electron within a
solid was developed by Sommerfeld in 1928. An electron within
the solid is viewed as having uniform energy throughout the box.
The energy required to remove an electron at rest from the solid
is e,. This is similar to our concept of a free particle in a box [recall
the potential-energy function described for the free particle in
Fig. 5.1(a)]. The cases are different in that we now grant that a
finite energy, ¢, will get the electron out of its container — the
metallic solid. Figure 6.1 shows the potential-energy function for
these two related cases. In both Figs. 6.1(a) and (b) are shown lines
representing the electron energy levels given by the Schrodinger
equation for translating particles, Egs. (5.3) and (5.7).

The Fermi-Dirac distribution for these particles can be written
in the form

_ g:
N ol — kT 11 (6.40)

where Eqg. (6.21) has been used to replace « in Eq. (6.7). The elec-
tron gas is degenerate just as the photon gas was. By arguments
similar to those employed in Sec. 6.2 we would find that in its con-
tinuous limit

3
g ---av(zﬂ?) Ve de (6.32a)

Equation (6.32a) is actually low by a factor of 2. Electrons have a
spin degeneracy of 2 because they can be spinning in either of two
directions. Each mode of storage of translational energy can
occur in combination with either mode of rotation. Equation
(6.32) should accordingly be replaced, in this case, by

32—
dg = 4;rrV(2?)-r;3) Ve de (6.41)
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Fig. 6.1 Potential-energy functions for a molecule in a box and a free elec-
tron in a solid.
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(a)  ldealization of a translating molecule in a unidimensional
box of length a. (recall Fig. 5.1a)

‘A \

7 ) 3. m
Energy, (mu,~)/2 of an

electron of energy €, after
being dislodged by radiation

€ —}—

Energy levels +
hy given by Eq.(5.3)
E=u

~

0 » Volume
a b

L(* Location of metal 4»'

(b Idealization of a free electron in a solid.

The distribution function for energy, f(e), is then

_dN _ 2m*2 Ve
05 =[oAE) = €9




154 quantum statistics

PROPERTIES OF AN
ELECTRON GAS

With the distribution function, Eq. (6.42), in hand, the properties
of an electron gas can be developed. For example, the number of
particles with energies greater than zero is

- 2m\32 [ VEdE
N = 4 V( hz) ﬁ oxp (= p) KT1 +1 (6:43)

This expression will reveal a very interesting quality of this (or any
other) Fermi-Dirac distribution, if we allow the temperature to go
to zero. First, let us look at the integral

: ‘ VEdg
m [0 exp [t — p)/kT] + 1

o - VEdt ‘ VE d J
= M exp [t — w)/KT] + 1 +f,. exp [t — w)/kT] + 1

= 2ueh? -0

where the lim y = uo, and e > po. We can see immediately from this
70

integral that

32
]Iri_n{} N(e) = %rv(zg) 1032 fore > uo (6.44)
and
3i2
1Irin(1) N(e) = ?V(gg-) €2 fore < wo (6.44a)

Equation (6.43) provides a basis for computing the chemical
potential (or the molar Gibbs free energy) at zero temperature.
When this has been done we can return to Eq. (6.42) with Eqgs. (6.44)
and (6.44a). The result for platinum is shown in Fig. 6.2, although
the scaling of the coordinates has been left as an exercise (Problem
6.19).

The quantity uo— called the Fermi level of the gas—is an
important quantity. All energy levels above it remain unoccupied
at absolute zero. However, translational energy is still allowed at
absolute zero as long as it does not exceed u;. The energy of
classical particles would vanish at 0°K, on the other hand. In
Table 6.1 Fermi levels are listed for free electrons in various com-
mon metals, along with other parameters.

At higher temperatures we can still approximate the free
energy, u, fairly easily. To do so we must observe that metals
melt while kT is still far below typical electronic energies. At room
temperature kT is only 0.0256 eV while p is typically in the range
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TABLE 6.1 Electronic Properties of Selected Metals

Linearc, term
Concentration of Work
free electrons at Fermi A experimental, (72/2) (kR° /o), function
Metal 0°C, 10°2 'cm? level uo, eV |(cal /g mole-°C?) x 10%|(cal /g mole-°C?) X 104 ¢, eV
Li 4.6 4.72 4.3 1.79 -
Na 2.5 3.12 1.73-1.80 2.81 2.3
K 1.3 2.14 — e 2.26
Cr — — — - 4.37-4.60
Cu 8.5 7.04 _— - —_
Ag 5.8 5.51 1.54-1.60 1.53 —
Au 5.9 5.51 1.8 1.53 —
W - — 3.5 — 4.49-4.50
Pt 6.6 5.30 1.60-1.65 — 5.3-6.2
Zn —_ —_ 1.25-1.42 - 4.24
of 1 to 10 eV. Inspection of Eq. (6.42) reveals that when (e — )

kT is small, f(u) ~ f... 2 (see Fig. 6.2). It turns out that the value
of u that satisfies this relationship is very nearly equal to p. Som-
merfeld did a more precise computation of x and found that

uo= ﬂu[l o Tr__(ﬂ—
12\ o

o)

(6.45)

The distribution curves for higher temperatures can then be
calculated, once y is known. This has been done and the results

Fig. 6.2 Energy distribution for the electron gas in platinum.
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plotted in Fig. 6.2, It is most interesting to note in this figure that
the distribution curves are not terribly sensitive to temperature.
The specific heat ¢, can be calculated using

“TaTh C Tar |
where
’ ¥ 2de
f(e) d
_ fn ciie) de ﬁ expl(e — p) kT] +1 (6.46)

=" i e!'2de
ﬁ F(e) de f[, exp [(e — w) kT] 4 1

At T = 0°K this gives

2up™? 42 .. 3
i = ”; /é;.w“'-‘-%n

Sommerfeld refined the computation for higher temperatures

and obtained
.3 572 (KT’
g = 5;“,[1 + 3 (‘u”) ] (6.47)

In all cases of practical importance kT <« u, so we obtain, to a very
close order of approximation,

c, - i(“—‘—r)ﬁm (6.48)
2 Mo

which is far less than the classical value, R°.

It is easy to show that when T -0, Debye's formula for the
specific heat of a solid® gives ¢, — BT?, where B is a constant. If
we add to this the electronic ¢, we obtain

C.ir wex = AT + BT? (6.49)

where B is obtainable from Debye's theory and we would expect
Atobe (72 2)(kR" py). The expression for BT is given in Eq. (10.22).

Experiments reveal that our predicted value of A does not
agree very closely with experimental values. The reason is that
the free-electron model is too crude for great accuracy. Observed
and calculated values of A are compared for various metals in
Table 6.1.

We therefore see (if only qualitatively) that, as a direct conse-
quence of the Pauli exclusion principle, electrons have appreciable
kinetic energy at very low temperatures. But the excitation energy

“Debye's formula is an improvement on Einstein's early quantum result. We
take it up in chapter 10.
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required to jar electrons into the unoccupied higher energy states
is too high, except near the Fermi level. As a consequence, only
very few of the electrons actually contribute to the specific heat of
a solid.

EXAMPLE 6.3 Evaluate the maximum energy of the free electrons
in tungsten at T = 0°K, and calculate the contribution of the elec-
tronstoc,at T = 3000°K. There are two free electrons per tungsten

atom.
The maximum energy of electrons at 0°K is uo. From Eq. (6.44),

R (ﬁ)zs
o= 8m. \nV

where N = 2 x Ny = 1.205 x 102¢/g mole,p = 19.3g/cm3, V = M/p =
(184,19.3) cm?/g mole, and m, = 9.1 X 10728 g. Then

(6.62 x 10272 ( 31.205 x 102
0= 16 9.1 x 1028\« 184,19.3

2/3
) =14.7x 102 erg

or
Mo = 9.18 eV

which compares favorably with the values given in Table 6.1.
The specific-heat contribution is given by Eq. (6.48) as

o - wr_z(i_\';r) . w2 X 1.38 X 10" X 3000 o
Y2 \ o ' 2x14.7x 102
for T = 3000°K. The resultis

¢, = 0139RY

as compared with 3R? for the tungsten itself. The electronic con-
tribution is only about 5 percent in this case.

Figure 6.1(b) illustrates another property of interest to solid-
state physicists, the work function, ¢:

p=¢€6—p (6.50)
This is the free energy that must be supplied before electrons will

flow from the surface of the solid in any number. Itis typically in
the range 2 to 6 eV (see Table 6.1).

PHOTOELECTRIC EFFECT

The Sommerfeld model for an electron gas made possible the
explanation of still another phenomenon that had caused a great
deal of concern. This was the photoelectric effect, discovered by
Hertz in 1887. Hertz discovered (by accident) that ultraviolet light
falling on a negatively charged plate would reduce the charge.
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Since the identification of the electron was not made until a decade
later, by Thompson, Hertz could not know that electromagnetic
radiation was knocking negatively charged electrons out of the
metal cathode.

The concept of an electron gas made it possible to attribute
the phenomenon to the removal of electrons by the radiant energy
hv. This effectisillustrated in Fig. 6.1.

Problems 6.1 Derive Egs. (6.5a), (6.6), and (6.7).

6.2 Derive the distribution of N,'s based upon W N! and
compare it with Eq. (6.5a).

6.3 Rain falls on a watershed. Evaluate the distribution in
time of raindrops passing the gaging station, if the number of
ways that a drop can find its way to the gaging station after time
t; is proportional to t2. There are two constraints on the distribu-
tion. The total number of raindrops that run off is N. The root-
mean-square time for the distribution is a known value, t.,..

6.4 InProblemé6.3replace t2 with t~ " andreplacet,,.with t,,.s =
[2° (N/N)t#]2. Show that the result now takes the form of a
generalized gamma distribution,

B 8 . B { 8 N _ﬁ' 18
- s on (] 2= (2) e

6.5 Plot e~ against temperature for 1 cm? of atomic hydrogen
and suggest a minimum temperature for which the atoms can be
treated as boltzons, in this case.

6.6 Show that e* ~ (27/3)32 V/N)A? (where X\ is the de Broglie
wavelength) when particles can first be treated as boltzons. Dis-
cuss the meaning of this criterion.

6.7 Verify Eq. (6.13a).

6.8 Verify Egs. (6.29) and (6.30).

6.9 Do a derivation, similar to the derivation of Eq. (6.33), for
gs. Under what conditions are the g potentials the same in each
case?

6.10 Verify Eqgs. (6.35a) and (6.36), adding some additional
terms to the expansions. Derive similar expressions for S and c,.

6.11 Show that a two-dimensional ideal Bose-Einstein gas does
not condense.

6.12 Derive Eq. (6.38). Include a verification that 8 = 1/kT.

6.13 Complete the steps in the derivation of Eq. (6.33c).

6.14 Use Eq. (6.27) to show that pV = U/3 for a photon gas.
Use the potential, g noton, to Show that

~ g2
S = ks
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and

for a photon gas. Compare this ¢, with the value given in Example
1.2,

6.15 In earlier sections we took great care to justify passing
from finite increments to differential representations of quanti-
ties. We were fairly casual about doing it when we discussed the
photon and electron gases, however. Explain why we were safe
in ignoring the question in these cases.

6.16 Show that for the electron gas in a metal, pV = 2U, 3.
Compare this result with the corresponding result for a molecular
gas. Calculate the pressure exerted by the electron gas in silver
at 300°K.

6.17 Calculate the mean speed and the root-mean-square
speed of an electron in a metal at 0°K.

6.18 Calculate the current density in Ampere, cm? across a
surface in silver at 0°K in either direction.

6.19 Develop Fig. 6.2 to scale. Plot the ratio (¢.)rp, (C.)ucica tO
scale as a function of temperature for platinum.
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In chapter 6 we undertook a fully quantume-statistical description
of ideal gases and found that the results resembled those of Boltz-
mann statistics, as long as the gas was dilute. Diluteness, in this
case, meant that the degeneracies were far from filled up — that
N./g: < 1. We found that this would be true for most atoms and
molecules at temperatures in excess of a few degrees Kelvin. But
atthese low temperatures only such gases as helium and hydrogen,
with very lightweight molecules, continue to exist as gases. Our
interest in the degenerate behavior of ideal gases is motivated
more by the problems of describing gases of subatomic particles
(such as electrons) and nonmaterial “‘particles’’ (such as photons)
than it is by a few low-temperature molecular problems.

We now wish to describe nondegenerate ideal gases in greater
detail. While the microscopic qualities of ideal-gas behavior were
treated in chapter 2, the methods of statistical mechanics will give
us complete macroscopic information.

161
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THERMODYNAMIC
PROBABILITY AND
PARTITION
FUNCTION FOR

7.1 IDEAL GASES

THERMODYNAMIC
PROBABILITY

In chapter 3 it was shown that for classical (distinguishable)
particles

Sue = K1 Wi = KN In Zi + = (.22)
from which it follows that
; U
Waiw = Z¥ exp (ﬁ) (7.1)

This is related, in accordance with Eq. (6.4), to the thermodynamic
probability for quantum (indistinguishable) particles by

Wi = N' Wigia (7.2)
Therefore,
ZN u
Windist = N1 €xP (;(-?-_) (7.3)
With the help of Stirling's approximation we can write Eq.
(7.3) as
Ze\V u
Windist = (ﬁ) exp (ﬁ) (7.3a)
where e is the natural number 2.71828. .. . Thus
Zz U
Simlial = kin Wimliu! = kN In (N) t kN + _T (?4)
which reduces to!
Sinaist = Saie — k In N! (7.5)

Thus the fact that real atoms are not distinguishable results in
a loss of entropy equal to kIn N!. There are fewer microstates from
among which the given macrostate can be chosen. Hence that
macrostate is less improbable than it was when we could tell the
atoms apart. Within the parlance of an information-theory formula-

'The missing algebra in this paragraph is left as an exercise (Problem 7.1).
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tion? of statistical thermodynamics we would say that our a priori
“‘uncertainty’’ of the state of the gas has been reduced.

PARTITION FUNCTION

THERMODYNAMIC
PROPERTIES

The partition function depends upon two basic types of energy
storage, translational and internal:

€ = € 1 €int
Thus, in accordance with Sec. 5.3,
Z=Z/Zin (5.26a)

The internal partition function Z,., can be obtained when g;.. and
€, have been evaluated either from quantum mechanics or by cer-
tain experimental methods. The energy .. might represent rota-
tional, vibrational, electronic, and nuclear contributions, as well as
energies of rotation-vibration interaction, vibration-electronic
interaction, and so on. Thus

€int = 6 + € + &+ €€y T €t (?.6)
and the corresponding partition function, Z,., is
ZinL = Z,ZE-Z.\-Z,.Zp_l-Z‘-_p' ok (?-?)

These energy modes need not all exist in a given particle. If
they do exist, they need not all be excited, and might be negligible.
The nuclear rotation and electronic modes of energy storage are
usually available to a monatomic particle, for example, but they are
only excitable at extremely high temperatures. They are therefore
often neglected.

Any two thermodynamic properties of a single-component,
single-phase system can be used to specify the state; the rest de-
pend upon these two. We arbitrarily take T and V as independent,
because the partition function is usually expressed in terms of
these variables. We also introduce N as a variable by considering
the size of the system to be variable. The fundamental equation that
uses T, V, and N as independent variables is the equation for the

2Entropy can be viewed as a measure of our uncertainty as to the microstate
of a thermodynamic system. For an advanced discussion, see E. T. Jaynes,
“Information Theory and Statistical Mechanics,”” Phys. Rev., 106, 620; and
108, 171 (1957).
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Helmholtz function,®* F = F(T, V, N). If we combine F=U— TS
with Eq. (7.4) we find that

Z
Fugie = —kTN In (T\?) (7.8)
This is almost identical with Eq. (3.24),
Fawe = —kTNIn Z (3.24)

The only difference lies in the additional term — kTN In (e, N), which
is equal to kT In N! for large N.

Many of the properties that are derivable from Eq. (7.8) or (3.24)
will not be altered by this term. For example, the pressure for in-
distinguishable particles

__OF B dln (Ze 'N)
p= aVvlr x il aVv TN
or
dlnZ
p = kTN -5'[/—‘ e (3‘25)

is identical to the result we developed for distinguishable particles.
Likewise,

JdF

U=F+TS=F— Tﬁ

L
from which we again obtain the same result that we obtained for
distinguishable particles

dIn (Ze/N)
aT

U= kTN (3.23)

voN aT

V.N

The entropy and Helmholtz functions [Egs. (3.22) and (3.24)] de-
pend directly upon In Z rather than upon its derivatives. They
therefore retain the influence of the In (e N) contribution and are
examples of properties that differ by an additive constant for dis-
tinguishable and indistinguishable properties.

It is often convenient to talk about the contributions of the
various individual molecular energies to the extensive properties
of molecules. Thus

Z zZ
In (T\?) ~In (We-) +InZ +InZ 4 (7.9)

‘We should recall that the Massieu function —F/'T = —F T(1 T, V, N)is the
Legendre transform of the entropy function S(U, V, N). This is discussed in
the context of Eq. (1.48). We should also remember that the symbol N is used
indiscriminately to designate the number of particles in microscopic equa-
tions and the number of moles in macroscopic equations. The distinction is
not really important because the two quantities differ only by a conversion
factor N;.
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where we have assigned the indistinguishability contribution,
In (e/N), to the ever-present translational term. This is the proper
place to put it because translation is required before indistinguish-
ability can have meaning. If particles did not translate they would
have identity by virtue of location and the In (e/N) term would not
arise. Any extensive property, X (X = F, or S, or U, or etc.), can now
be calculated as the sum of a series of additive terms:

X = X:‘Lx.r +Xx SREEE (?.10)

each corresponding to one term of Eq. (7.9).

IDEAT, MONATOMIC
7.2 GASES

PARTITION FUNCTION
The monatomic ‘‘molecule’” stores no energy in vibration. The

rotational contribution js the nuclear-spin contribution in this case,

and it has a characteristic temperature on the order of 10'0 °K.This

means that no rotation of the atom (or of the nucleus) can be ex-

cited beyond its zero ground state at reasonable temperatures.

Thus the only internal mode of energy storage is electronic, and

€= € 1 €in = €& + € (7.11)
and
g = g9 (7.12)

Then, with the aid of Eq. (5.28), we can write the partition function
for an ideal monatomic gas as

v 32 &
Z = ;5 @nmkT) Zg‘. exp( kT) (7.13)

The energy levels of electrons moving about the nucleus are
fairly widely spaced, they have characteristic temperatures on the
order of 104 °K. The matter of determining these levels becomes
fairly complicated, owing to the three-dimensionality of motion.?
The ground energy e and its degeneracy g, are zero and unity, re-
spectively, so the summation term in Eq. (7.13) can be deleted at
moderate temperatures.

#The interested reader will find values of electron and nuclear energy levels
in C. E. Moore, Atomic Energy Levels, Natl. Bur. Std. Circ. 467, vols. |-111, 1949,
1952, 1958.
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THERMODYNAMIC
PROPERTIES

SACKUR-TETRODE
EQUATION

Combining Egs. (7.8) and (7.13) yields the fundamental equation
for an ideal monatomic gas:

Ve €,
F=—kTNIn| - (2 323" g, -z 14
TN In [hw( wmkT) Zg‘ exp( 0 )] (7.19)
The computation of pressure will reveal no new information,
but it will give us confidence in the use of this fundamental equa-
tion. Substituting F into Eq. (3.25) gives
 NKT

P = —V = nkT (236)

If Vis expressed on a molar basis, this becomes

ROT
p== (2.5
which is more comforting than edifying.

The substitution of Eq. (7.13) in Eq. (3.23) also leads to previously

known results if we take the electrons to be in their ground state,
U=3RT (1.27)
and

U

— 3 po
aT iR [recall (1.27) and (3.31)]

V.N

c, =

Finally, the entropy is

_ _9F
Car

VN

or

2zmkT\2 V] 6 €@
S = Nk In[( h ) N] ta ang,exp(—kT)

2_ g.(e/kT) exp (—e KkT)
Zg.. exp (—e kT)

(7.15)

At most temperatures of practical interest, the electron terms
vanish and we have

2mrkT\*2 kT 5]
s - knlin [( —) —] 2 7.15a
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Equation (7.15a) is an exceedingly valuable result. It is called the
Sackur-Tetrode equation and it expresses the absolute entropy of
an ideal monatomic gas. It is the fundamental equation for such a
gas and it can easily be written in the form of Eq. (1.23).

EXAMPLE 7.1 To show how difficult it can be to evaluate absolute
entropy with the methods of classical thermodynamics and how
helpful the Sackur-Tetrode equation can be, we consider an
example. Suppose we wanted to know the entropy of mercury
vapor at its normal boiling point, 630°K.

The classical expression for the absolute entropy of an ideal
gas is

T
S =f ¢,%T)d(n T) — ROIn (pﬂ) 3 '-a%ﬂ’t—heaﬁ (7.16)
0 ref phase changes

The integration is done at low pressure from absolute zero of
temperature up to the temperature of interest — 630°K in this case.
The term ¢,%(T) designates the specific heat measured at a low-
enough pressure — usually 1 atm — that it will not change with
further reductions of pressure. It is the specific heat that is most
commonly reported for a substance.

The path to be used here is as follows. Graphically integrate
experimental values of ¢, d(In T) for the solid, up to the melting
point, 234.2°K. Then graphically integrate ¢, d(In T) for the liquid,
from 234.2 to 630°K. In the present examplec we can choose p..; as
1 atm so that the second term in Eq. (7.16) is zero. The latent heats
of both melting and vaporization must be obtained for use in the
last term. After considerable labor, which can only be undertaken
if data are available, Eq. (7.16) yields

cal 558 14180 cal
Sepn =(14.3 63)g ( )gmole-"K

molesk ~ ° *\2342 * 630

cal
g mole-°K

= 20.6 4 (2.4 + 22.5) = 45.5

The Sackur-Tetrode equation [Eq. (7.15a)], on the other hand,
predicts that

cal
S =45.7 g—mole?"-k
The two computations differ by only about 0.4 percent. This dis-
crepancy should probably be credited to experimental error.
It is interesting that the simple statistical considerations upon
which the Sackur Tetrode equation is based circumvent the diffi-
culties introduced by phase transitions and the thermodynamics of
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solid bodies. The reason is that the entropy is an absolute char-
acterization of the disorder of a given ensemble of particles. In
classical thermodynamics, entropy (although it is a state property)
is often expressed in terms of reversible heat transfer during a
path from a point of known entropy. Equation (7.16) is such an ex-
pression. Statistical mechanics shows how the absolute entropy at
a point can be found without reference to any such fictitious paths.

IDEAL DIATOMIC

POTENTIAL-ENERGY
FUNCTION FOR A DIATOMIC

MOLECULE

The evaluation of the thermodynamic properties of diatomic
molecules is made considerably more complicated by the existence
of vibrational and rotational modes of energy storage. Of course, we
have already noted that these modes are unexcited at low tempera-
tures and diatomic behavior eventually reduces to monatomic be-
havior. But, by the same token, the behavior of diatomic molecules
becomes a good deal more complicated than we indicated in
chapter 3, as the temperature becomes very high.

The internal potential energy of a diatomic molecule provides
the means for understanding much of the complication inherent in
the diatomic molecule. The electrons of the component atoms
interact and exert forces that hold the atoms in place. The inter-
molecular force F can be written in accordance with Eq. (5.8) as the
negative gradient of the potential energy of electronic bonding U(%),

d
F = T dE ue) (7.17)

where £ is the distance between atomic nuclei.

Figure 7.1 shows a typical potential-energy function for a par-
ticular electronic state. For spacings smaller than an equilibrium
value £ the electronic forces repel and for larger spacings they
attract. The zero-energy state is taken as the completely dissoci-
ated condition in which the atoms have been moved far from one
another. The energy at equilibrium is accordingly the negative
“‘dissociation energy.”” The actual energy that can actually be
realized in dissociation will not be D (see Fig. 7.1) but a slightly
smaller value, Dy. This is the case because an oscillator cannot exist
in a zero-energy state. In accordance with Eq. (5.10b), there must be
a ground level of vibrational energy e, equal to ! hy, so D, is equal
to (D — &),
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Fig. 7.1 Potential-energy functicn for a diatomic molecule in a particular
electronic state.

U A
The dissociated oscillator is taken to be
\ in its zero potential-energy state
0 f
\ Uit
\ / Linearized oscillator
\\ 2nd quantum state
\ Ist quantum state, €, = L. hv
-0y
-D L : > £k,
0 1 2 3

We should observe in this context that £ is not a real position
and it is reachable only by extrapolation. The molecule is never
really in equilibrium because ¢, is always finite.

The analytical description of the diatomic molecule is rendered
complicated by a variety of factors at higher temperatures.

1. The potential-energy function changes when the electronic
states are excited. Fortunately, the electrons remain in their ground
state up to pretty high temperatures; but when they are excited, &
increases and the dissociation energy changes.

2. At the higher levels of vibrational excitation, the vibration
becomes increasingly nonlinear, or anharmonic.

3. As the amplitude of vibration increases, the moment of
inertia of the molecule varies during rotation, thus serving to
couple rotation with vibration.

4. Centrifugal stretching also serves to influence vibration
when the rotational mode becomes highly excited.

5. When vibration has been excited to a sufficiently high level,
the atoms will dissociate and absorb the dissociation energy.

The internal energy of the diatomic molecule [recall Eq. (7.6)]
then takes the form

cm=¢+e+(e—e)+e —D+---
=¢+e+(eo—e)— Do+ (7.18)

where we have not written down any of the coupling terms. Equa-
tion (7.7) also becomes

Zin = £,2.2.2p" -+ (7.19)
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where

7 Z exp ( —‘l’{r—f‘“) (7.20)

This can be put in nicer form since

€10 hy G,
exp(— 1) =exw(—57) e (57

Thus, just as Eq. (56.30) summed to Eq. (5.31), Eq. (7.20) sums to

~ exp(0,/27)
* 2sinh (0,/2T)

so Eq. (5.31) should be replaced with the corrected expression,

1

Chak ey T k)
Finally, the partition function for dissociation is
D
Zp = exp (k—]‘;) (7.22)

Some typical values of Dy for diatomic molecules have been in-
cluded in Table 7.3, Sec. 7.4.

RIGID-ROTOR
HARMONIC-OSCILLATOR
APPROXIMATION

To afirstapproximation valid for moderate temperature, the in-
teractions among various internal energy modes can be neglected,
and the molecule can simultaneously be characterized both as a
rigid rotor and as a harmonic oscillator. Then the fundamental
equation, Eq. (7.8), can be written in terms of a partition function,

Z= Zl'Zlnt = ZrZrZ:-ZrZD (719&1}

The partition functions Z,, Z,, and Z, were all given in chapter 5
and eq. (7.21), and the following results are obtained easily
(Problem 7.5) for the electronic and dissociation contributions to

properties:
Z. = g.
b for
g" _ g'} In Ceo = Cre = 0 1 oderate (7.23)
F -G - gl}?n"ringl temperatures
and
Up = Hp = Fp=—N,;Dy

7.24
So=cp=cp=10 ( )
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Now we are in a position to explain, in more precise terms, the
variation of ¢, for diatomic gases that was exhibited in Fig. 3.3. This
behavior can be computed directly for temperatures below the
point of molecular dissociation or electronic excitation. We simply
combine Egs. (5.28), (5.33), and (5.31) with (7.19a) in

_pod (1 f_’lﬁ_?)
il aT(T aT (.25
or

Cy J ,f(dInZ dInZ  dlnZ,

RO~ aT[T’( aT " aT " ar )] (7.26)

Two provisions that were made in the statement of the kinetic
hypothesis for ideal gases in Sec. 2.1 can profitably be re-empha-
sized at this point: (1) The gas was assumed dilute, but particles
were not shrunk to point masses. This permitted us to talk about
structured ideal gases. (2) Energy dissipation was disallowed in
collisions, but we did not go further to claim that collisions were elastic.
Internal modes of energy were thus permitted to exchange energy.
The result was consistent with Boyle's and Charles’s laws, but it
did not require the additional assumption (which some authors
make) that the definition of a macroscopic ideal gas must include
constant specific heats.

Before leaving the diatomic molecule we should look at two
complications in somewhat greater detail.

ON THE
DISTINGUISHABILITY OF
ATOMS IN THE
HOMONUCLEAR DIATOMIC
MOLECULE

A homonuclear diatomic molecule such as H,, Ny, and Oz is
made up of two identical atoms. We restrict our detailed discussion
of the indistinguishability of the atoms in a homonuclear
diatomic molecule to hydrogen. This case, in which the ends are
simple protons, presents a simple-enough structure to expose the
difficulties of indistinguishability without undue complication.

The question as to whether or not the atoms are distinguishable
in a hydrogen molecule is more difficult to answer than it might first
seem. We must first write a proper wave function for the rotor —
one thatincludes attributes of the ends. For the hydrogen molecule
(neglecting electronic states and considering translation and vi-
bration separately), we have in accordance with Sec. 5.3,

';"n-,rid rotar — '&rﬁbnun (?'2?)

The wave function is the product of the wave functions for the in-
dependent rotational and spin modes of energy storage.
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The wave function ., is for nuclear spin. For the hydrogen
molecule it describes the combined spin energy of both hydrogen
nuclei. We have ignored the contribution of nuclear spin to the
partition function because spin cannot be excited at physically
plausible temperatures. The importance of nuclear spin lies in that
it can give identity to the ends of the molecule, even in the ground
state. If the wave function .., is symmetric in the sense that the
nuclei could be interchanged without altering it, then the nuclei
can be called indistinguishable. If ¥..,, changes when the particles
are interchanged, then we say that it is antisymmetric. The nuclei
can be called distinguishable in this case.

Consider first the symmetric case. The spin degeneracy of the
pair of nuclei g, "2’ must be written in terms of the spin degeneracy
of the individual nuclei g.. There are several ways in which the
ground-level degeneracy gy "' of the two indistinguishable particles
can be selected from among g, distinguishable occupancy modes.
Using Problem 4 in Sec. 3.2, we obtain

o+ 2 — 1) 0+ 1

Consider next the antisymmetric case. In this case gy ' is the
number of ways that two distinguishable particles can be selected
from among the gy occupancy modes. Using Problem 3 in Sec. 3.2
we find

Sy Q‘u1- golgo — 1)
gotd = I - W (7.29)

The total degeneracy of both cases will also be of interest sub-
sequently [compare with Eqg. (5.20)],

+1 -1
go''2 = _Q‘u(gnz ) - Qu(gnz ) = go® (7.30)

The symmetry of the rotational wave function must also be
questioned. If the nuclei are interchanged, it will be as though f and

¢ were changed to = — #and ¢ + =. This substitution in the expres-
sion for ,, Eq. (5.15), leads to
Yl(m— 0, ¢ + 7) = (—1)(0, ¢) (7.31)

where /is the rotational quantum number. Thus ¢, is symmetrical
for even [ and antisymmetrical for odd /.

The Pauli exclusion principle provides the basis for selecting
the correct wave function for the molecule. As we noted in Sec. 6.1,
it precludes a quantum state from being occupied by more than
one proton unless the wave function for the system of protons is
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antisymmetric. Now with reference to Eq. (7.27) we note that the
wave function for a rigid rotor must be antisymmetric:

Yricid rotor = Yrlepin = antisymmetric (7.32)
so that two possibilities can take place,

Wriidl rotor = Yr Y casel (7.32a)

antisym  antisym ;gi

Yrizid rotor =_\{z_._ Yopin case 2 (7.32b)

antisym  sym antisym

Consider first, case 1: If y.,,, is symmetric, the rotational wave
function must be antisymmetrical. This requires that

/-odd and g, "= -"1’—(;‘7‘%1;9 (7.33)
Conversely, case 2 is defined by .., = antisymmetric, ¢, = sym-
metric, and

/=even and g,)"?= g(go = 1) (7.38)

2

These two cases actually represent two identifiable types of
hydrogen gas. The firstis ortho-hydrogen, and its rotational partition
function is®

2 1“odd

o — 9@ D~ o) l)exp[-—f({ : 1}"—;'] (7.35)

For hydrogen nuclei the lowest value of the quantum number for
nuclear spin turns out to be !, and the ground-level degeneracy is
given by go = 2(1) -+ 1 = 2 |note the similarity to g, = (2/ + 1) in the
rigid-rotor case in Sec. 5.1]. Thus

Zorie = 33 (2 + 1) exp [—:’(f ~ 1)(}]’] (7.352)

1 odd

For para-hydrogen it follows that

Zum 91.(9%:__1? 2 @+ Dexp [—f(f - 1) %] (7.36)

or

=),

2 = Z @2 - 1)exp[ -I({ + 1) T] (7.36a)
ll\'\L'I]

SThe reader will note that we treat H> malecules as boltzons even though the

Pauli exclusion principle applies. The reason is that ¢ >> 1 for almost any

configuration of gaseous hydrogen |recall Eq. (6.12a), and Fermi-Dirac sta-

tistics can be replaced with Boltzmann statistics.
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If we ignore the distinction and write Z, only for the sum, the
result will be

Z =32 (2l+1l)exp [—f(f - 1) (-}]

1 odd

'*;Z @1 + l}exp[-—:‘(! 1) (;] (7.37)
even
from which we can immediately conclude that there will be three
ortho-H: molecules for each para-H, molecule. The specific heats
computed from Egs. (7.352), (7.36a), and (7.37) are shown in Fig. 7.2.

The separation of the two kinds of hydrogen can be accom-
plished in the laboratory. Once it has been done, the 3:1 equilib-
rium will not reestablish itself in the separated component for
months; for practical purposes the two gases retain their inde-
pendence when they are mixed together, although they are not
separate chemical species.

At higher temperatures, where the terms of the summations
are significant up to high /'s, we have

2 Y. @+ I)exp[—!(;' +1) (;]

{ odd or
leven

, e,
~ 2 (2l + 1)exp I:—-.f({ £ 1) .T_]

all

It follows that as @),/ T — small, Eq. (7.37) gives

),
Z 22, @+ 1exp [— I+ 1) 'T'] (7.38)
all !
Fig. 7.2 Specific heats of diatomic hydrogen.
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27F
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We saw in Eq. (5.34) that this series sums to T ©),. The factor 2 is
actually g.2 2 (Problem 7.10) evaluated for g. = go = 2. The con-
stant g.2 arises from nuclear spin, which is ordinarily neglected in
the classical evaluation of partition functions and the 2 in the de-
nominator is called the symmetry number ¢ because it arises from
molecular symmetry. Thus

z =91 (7.382)

a O,

Although the present discussion of hydrogen is only illustrative
of homonuclear molecule behavior and is not generally applicable,
Eq. (7.38a) is a general result for T > .. The use of the symmetry
number is exploited much further in Sec. 7.4, for polyatomic mole-
cules.

ANHARMONICITY, ROTATION-
VIBRATION COUPLING, AND
CENTRIFUGAL STRETCHING

Let us return to a consideration of the potential-energy function
for a diatomic molecule as shown in Fig. 7.1. As more energy is
stored in the vibrating system, the displacement from the equilib-
rium position ¢ £ = 1 increases. The allowable quantum energy
levels, designated by horizontal lines, are initially spaced equally,
and as the nonlinear behavior becomes more pronounced, they
begin to bunch more closely together.

Although the function U(¢) is usually complicated, it can be
represented with a Taylor series as

du 1 d*U|

) = & B By S — EF—E)R 4. 7.39
U(\) U(H) d-':‘ i((k s..} 2} d&: |E‘(5 Hl] ( )
But U(L) D and (dU dt):;, = 0. Thus U({) can be approxi-
mated as
i (¢ — £)* d2U|
EY ~ — i e I .4
U@~ -0+ ===l (7.40)

whence (d*U d&);, is the ‘‘spring constant’” for the equivalent
linear vibration. Figure 7.1 also includes the approximation (7.40)
to U(g).

Now let us consider the vibrational energy of the molecule as it
is influenced by anharmonicity. First, we return to the result for
harmonic vibration, Eq. (5.10b),

€& = h(j + 1) (5.10¢)

This expression can be extended approximately for use with the un-
evenly spaced energy levelsin Fig. 7.1 if itis written as a power series
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in the quantum number, (j 4+ !). Thus, comparing Eq. (5.10c) with
Eq. (5.10a), we have
€y o
— = K[+ 1) — x( + 12 4 4
e = kG + D = xG 412+ (7.41)
where k. is the wave number of the vibration at the equilibrium point
and x. is a constant, much less than unity. k. (or 1. \.)is based on the
wavelength ). that light oscillating at a frequency » would have. Itis
equal to [(d*U, d&?):, m]' 2 2xc.

The rotational energy also deviates from its rigid-rotor value,
© P ey =B+ (5.14a)

he,  dwel ' I ’

by virtue of centrifugal stretching. This can also be corrected
approximately to

(73

< = B + 1) — D2+ 1) 7.4
he = B+ 1) = DA+ 1) (7.42)
where the constants B and D have been corrected from their
equilibrium values B. and D, by

B.=B.—a(j+1)+
D, = D+ B0+ 1)+

where D, = (4B.3, k.2)
It is now possible to write a single expression for the coupled
rotational-vibrational energy of an anharmonic oscillator,

(7.43)

ha ~ Kl + 1) = X+ D) + B+ 1) — DU+ 17

—a(j + DI+ 1) (7.48)

This expression depends upon correction constants x., D,, and «, as
well as k.. The constant 3 has been dropped because it almost
always proves to be far smaller than D.. These constants are de-
veloped either by experiments or by semirational analysis based
upon the Schrodinger equation. Some typical values are given in
Table 7.1.

The partition function can be corrected to take account of the
combined energy ¢ .. The processisinvolved® and here we can only
summarize whatis done. By the definition of the partition function
we have

27 = 2. > giexp (—ff kT*) (7.45)

=00=0

“See K. S. Pitzer, Quantum Chemistry, Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1953, app. 14; or N. Davidson, Statistical Mechanics, McGraw-Hill, Inc.,
New York, 1962, sec. 8.8.
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TABLE 7.1 Rotational and Vibrational Constants for Typical Diatomic

Molecules

Substance k., cm™! B, cm™! D, cm! k.x., cm™! @, cm™!
HB, 2649.65 8.4665 3.53 X 10+ 45.57 0.2325
Br2 323.22 0.08092 2.035 < 10°% 1.070 0.000275
CN 2068.705 1.8991 6.401 < 10 ¢ 13,144 0.01735
Cco 2169.52 1.9302 6.43 ¥ 106 13.453 0.01746
Clz 561.1 0.2408 1.8 107 4.0 0.0017
H2 4409.3 60.848 0.04644 125.325 3.0664
12 214.52 0.037364 0.455 < 108 0.6133 0.0001206
NO 1903.60 1.7042 5 ® 106 13.97 0.0178
N2 2357.55 1.99825 6 x 10-¢ 14.059 0.0179
02 1580.246 1.445 4.956 x 10-¢ 12,071 0.0158

wheree, = 1 hy, the ground-level vibrational energy and g, = 2/ + 1

the rotational degeneracy. After some judicious approximations
and considerable algebra, the double summation can be approxi-
mated as

1 T (1—2x)6, ]!
Z: &y = (].T((';“EB—) GT‘),[ 1— exp{ - 7T:H‘ )Z‘-.,,; (?453)

where the term Z.... is the following complicated function of the
constants and temperature:

) 1— a/2B. 0, 2D. T
Zeorr =1 4 3 T " B.— /20,
L — 1
(B. a— L2)exp|(l — 2x)0, T| — 1
2x,0,/T

T lexp (1 — 2x)0, T]— 1}2 ()

Additional methods exist for simplifying the derivatives of Z so
as to facilitate evaluations of the therrnodynamic functions based
on Z. Although the preceding methods account for the major non-
linear effects, they only do so in a range fairly near to equilibrium.
It should be clear at this point that a great deal can be done toward
evaluating properties using methods that, although semiempirical,
remain reasonably close to the quantum-mechanical realities of
the gases.

A knowledge of characteristic temperatures has proved to be of
importance in what we have done and it will continue to be im-
portant in subsequent applications. Table 7.2 lists values of ), and
), for a number of diatomic gases. The characteristic temperature
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of translation has not been tabulated because it varies with the size
of the container that holds the gas. For a given gas of molecular
mass m, O, can be expressed as

_ h*8k 39 x 10738

6, =
mVv2:  mVy23 g.cm?

i

TABLE 7.2 Some Characteristic Temperatures of Diatomic Gases

Substance e, °K @, °K
H2 87.5 6320
HD 65.8 5500
D2 43.8 4490
HCI 15.2 4330
HBr 12.2 3820
N2 2.89 3390
co 2.78 3120
NO 2.45 2745
02 2.08 2278
Cl; 0.351 814
Br; 0.116 465
I2 0.0537 309

EXAMPLE 7.2 Evaluate the entropy of nitrogen at 2000°K and 1 atm.
First let us evaluate the corrections as they appear in Egs.
(7.45a) and (7.46). Using data from Tables 7.1 and 7.2 we obtain

1—:% =099 1—2x =098 Z,, = 1.022
2B,
Clearly the corrections amount to very little in this case. Neverthe-
less we carry them along. The full partition function is then written
in accordance with Eqgs. (7.23), (5.28), and (7.45a),

:rT)“ 1 T 1.022

Z=22022) = 9"(3{1)", 0.996 50, 1 — exp (—0.988 O, T)

Now 6, = 3.98 x 1073% x 6.02 x 1023 28V23 = 0856 % 1075 V23
and Vis given by the ideal-gas law as

0
V= ROT _ 82.05
p

atm-cm’
°K-g mole
= 1641 < 105 cm? 'g mole

2000°K 1 atm

Then g. = 1and ¢ = 2 so we obtain for 1 mole of nitrogen,

B [ 20007 ]-‘ 21641 x 105 2000(1.022)
~ L4 x 0856 x 105 1.992  2.89]1 — exp (—.9886), 1))

= 1782 x 103
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The molar entropy is given by Eq. (3.22), corrected in accor-

dance with Sec. 7.1
Ze U
S = kN4In (E) + T

where, from Eq. (3.22),

u d1n(Ze/N.) |:5 0.9886), exp (—.9880)./T) ]
= = kTN, 22 vy 2 4 -
T 9T s A2 T [1— exp(—.9880, T)]
0.187 ,
= 8.31 x 107| 2.5 + 1675 0813/ = 2.40 % 10% ergs,/'g mole-°K
Thus

(782)2.718) . N]
o2 <10

+ 2.40 x 108 = 2.525 x 10% ergs/g mole-°K

S = 8.31 x 107 lnl:

or

cal
i 60'2g mole-°K

IDEAL POLYATOMIC

Polyatomic molecules introduce complications that exceed
even those we have been discussing. We can make reasonable
progress, however, if we initially ignore such problems as an-
harmonicity, coupling, and electronic excitation, which arise at
higher temperatures.

Consider, for example, the problem of describing the vibration
of the n atoms in a molecule. A total of 3n coordinates is needed to
specify the motions of each atom. But our knowledge of the trans-
latory motion of the center of mass, in effect, removes three of
these degrees of freedom. By the same token, two more coordi-
nates are given to a description of rotation if the atoms lie on a
straight line, and three coordinates are lost if they do not. Conse-
quently, there are (3n — 5) or (3n — 6) modes of vibrational freedom
for molecules composed of two or more atoms, depending upon the
arrangement. These values correspond with 2(3n — 5) and 6(n — 2)
modes of vibrational-energy storage.

Let us now write partition functions for the polyatomic mole-
cule. The translational partition function is still given by Eq. (5.28)
and offers no new problems in more complicated cases. The vibra-
tional and rotational partition functicns will, however.”

’N. Davidson, reference 6, chap. 11, discusses in some detail these and
other problems related to polyatomic molecules.
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ROTATIONAL PARTITION

FUNCTION

The moments of inertia of polyatomic molecules are generally
quite large. Accordingly, their characteristic temperatures of rota-
tion, &), = A2 2/k, are generally quite low, and we can usually treat
them as boltzons. If we leave the nuclear degeneracy out of the ro-
tational partition function, we can write for molecules whose atoms
lie on a straight line,

Lr = —T (5.34b)
C’(-)r
This can be viewed as the product of two rotational components.
Indeed, it would have arisen as such a product had we obtained it
using the modified phase integral, Eq. (5.37a),

1/2 12
7 - 1(2_"-;‘5?) (24T T) (7.47)

T n?

The moments of inertia about the x and y axes, [, and |,
would be the same in this case.

The symmetry number, o, is a device that can be introduced
when T > (), to account for the indistinguishability of certain rota-
tional modes. In CO,(0—C— 0), for example, ¢« would be two just as
it was for a diatomic molecule. For CO it would be only unity. The
symmetry number for a three-dimensional tetrahedronal molecule
serves to illustrate how a larger value of « might easily come about.

Figure 7.3 shows a tetrahedronal methane (CH,) molecule. The
four H atoms can be arranged in 4!, or 24, ways. But only 12 of these
can be obtained by simple rotation: Every 120 degrees of rotation
about A-A puts the molecule into a new orientation that is indis-
tinguishable from the last. The same is true about B-B, C-C, and
D-D. There are thus 4 x 3, or 12, “‘rearrangements'’ attainable by
simple rotations. The remaining (24 — 12), or 12, rearrangements
are ones that are notincluded in the degeneracy (2/ -+ 1). They are
not meaningfulin this consideration. Twelve is the symmetry number
for this case and it could have been obtained as a high-temperature
limit for very complicated quantum behavior, just as ¢ = 2 was
obtained in Eq. (7.38) for H.. Some symmetry numbers are included
in Table 7.3 for common molecules.

The partition function for rotation of a “‘three-dimensional
molecule’” — one with rotation about three axes — can be obtained
using the phase integral. The result is

=112 142 1/2 1/2
5 T (2:_;;:T) (ZI;J’(T) (ij.fr) 7.472)
T 1= in= n:
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Fig. 7.3 Axes of symmetry for a methane molecule.

A
TABLE 7.3 Short List of Some Molecular Properties

Spacing,| ke | Do, | ke | ke | Ko | Kew Bond angle, |Symmetry

Substance | Bond A cm™| eV [em!|cm™temTt|em™! 26 degrees number o
0 0=0 | 1.207 1580 | 512 — - = = — 2
N2 N=N | 1.098 | 2358 | 9.76| — — — — — 2
co C=0 1.128 | 2170 | 11.09| — — - — — 1
Hz H—H | 0.742 | 4405 | 4.48| — — — — — 2
CO: C=0 1.926 - — | 1343 | 667| 6672349 | O—C—0, 180 2
H20 O—H | 0.958 - — | 3697 |1595| 375%6| — |[H—O0— 104 5 2
N20 O=—N 1.184 — — | 1277| 589 589 2224 | N—NO, 180-—— 1

N—N | 1.128 — —
CH4 C—H 1.091 — — | 2916 once, 1534 twice, | H—C—H, 109.5 12
3019 thrice, 1306 thrice

where we have incorporated the symmetry number. Clearly the use-
fulness of this expression to us will depend upon our ability to
evaluate the molecular properties I,, /,, and I.. This evaluation is not
difficult once we know the masses of the component atoms and
their spacings within the molecule.
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Figure 7.4 shows how the conventional dynamical formulas for
moments of inertia apply to three typical molecules. The derivation
of these formulas is elementary and has been left as an exercise

Fig. 7.4 Some moements of inertia for typical molecules.

S TN T SR, I
I, = Imyixg® + g7 = Imgr,,
5 B T PO
Iy = 2mgxg® + 207 = 2mgrl
1 /] =3 ZP s 3
o T =Moot Y zpT) = Img

.l o ~ -2 .« 2 .
foo = 2mgry™ = “Molys + e+ 2F)

tad COy an example of a straight-line symmetrical molecule,
Coordinates should be turned so that [, = f, = Iy and 1. = 0.

a jk
H
»
Mh-c
¥
_ 1
: / H
.//
S
i H H
fc.N
3
N 2my,
fo= 2mynteosto (1 -—— 1L
me + 2my
. 8
Ton = Mereog + My (reey + e ) 1. = 2myr,? sin? @

r - 12

Uiere oy Ymylrey +ry¢) ] p y
_,— - = [+ ]
oy, + g + My ¥

(b HON an example of a straight- (¢) HyO-an example of a planar
line asymmetrical molecule. molecule,
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(Problem 7.14). Table 7.3 lists some typical values for atomic spac-
ings along with certain other molecular constants of interest.

VIBRATIONAL PARTITION

FUNCTION
The vibrational partition function for a polyatomic gas is, as we
noted earlier in this section, based upon 3n — 5 or 3n — 6 modes
of vibration, where n is the number of atoms in the molecule.
Thus
In—5
or In—=6
o= 3 (y+DHh
i=1
and the partition function is given in accordance with Egs. (5.26)
and (5.31) as
3n—35
or 3n—6 1 (? 48)
Z, = TR O .
- JI! 2sinh ()., 2T)
where
0, =
d k
In the limit of @, /T <1,
n—-5
or n—=6 T
Z, — I[ ) (7.48a)
Ji=1 vy
Figure 7.5 illustrates how two molecules of the structure XY:
might vibrate. If the molecule lies along a straight line, as does
CO,, then there should be 3 X 3 — 5 = 4 modes of vibration. If it is
planar, as is H,0, then there should be only 3 x 3 — 6 = 3 modes.
Figure 7.5(a) shows the four modes for CO. and Fig. 7.5(b) shows
the three modes appropriate to H.0. Each of these modes has a
wave number of vibration k.. Numerical values of the k. for typical
molecules are also given in Table 7.2.
IDEAL-GAS

S5 MIXTURES

THERMODYNAMIC
PROBABILITY AND THE
FUNDAMENTAL EQUATION

The defining assumptions for an ideal gas include the stipula-
tion that intermolecular forces act only during collisions — that the
molecules are independent at any given instant. Thus we would
expect that if gas molecules of several different species are mixed
together, the macroscopic behavior of each species will be inde-
pendent of the other species.
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Fig. 7.5 Modes of vibration for two molecules of the type XY2.

t

| 8 :
A ani AN o

(a)  the four modes of vibration of a straight- (b)  the three modes of vibration of a planar
line molecule, CO,, with three atoms molecule, H, O, with three atoms

If, for example, the independent variables Tand Vare specified
for the entire mixture, the remaining properties should be sums of
the properties of the independent species. For r components,
1,2,...,a4...,r,

r

P= 2 Pa u-h-.erua S=2.S. etc.

a=1 a=] a=1

so that such important macroscopic relations as Dalton's law
appear as obvious results. In particular, we can write the Helmholtz
function as

F(T, ViNi, .o N = 30 Fo(T, V, N,) (7.49)
a=]
This is the fundamental equation for the mixture. It tells us that if
we can obtain the fundamental equations for each of the com.
ponents, then the fundamental equation for the mixture can be
written immediately.
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Now let us iook more carefully at the statistical basis for Eq.
(7.49). In developing the statistical-mechanical description of a gas
mixture we introduce a formal method that can later be extended
to treat more complex systems, such as chemically reacting, and
nonideal, gases.

The thermodynamic probability of a mixture of independent
components is the product of the thermodynamic probabilities of
each of these components. We view the gases as being nonde-
generate and indistinguishable; thus they should be describable
by Eq. (6.8), and W for the mixture is

wo [[ES 2 %2 1% o

i=0 Ny! i=o N!

The equations of constraint for this mixture are somewhat more
complicated than those for a single component. There are a total of
r constraints expressing the conservation of particles,

2 Ney=Nae (a=12,...,n (7.51)
and a single statement of the conservation of total energy,

222 Noga, = U (7.52)

The equilibrium distribution of molecules is obtained from
Egs. (7.50), (7.51), and (7.52) using the method of Lagrangian multi-
pliers (Problem 7.15). The result, as we might anticipate, is

o Nagﬂ'u Eﬂ:
Nog = ~52% ex p( kT) (7.53)
where
. .
Zy = D G OXP ('k_r) (7.54)

The entropy in this case is

S=kinW - 9 - kIn [[I (z[, —)'\' } (7.55)

or

_ % . Z N, In (z N_) (7.55a)

We can now write the fundamental equation for the mixture in
the Helmholtz-function form,

F=U—TS = —kTIn “I (Zf, ;:-)'\“:l (7.56)

[+3
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To verify that thisis a proper fundamental equation we should note
that, in accordance with Eq. (5.26),

Za = AT, Va|Z(M)aZ(Ma, - - = [Z(T, V)la (7.57)

so that the Helmholtz function depends upon the correct variables
for it to be the fundamental parameter:

F=FT,V,N,...,N,) (7.58)

Equation (7.56) thus should contain all the thermodynamic informa-
tion for the mixture. It can be written explicitly if the partition func-
tion for the component gases can be written.

THERMODYNAMIC FORMULAS

By differentiating the fundamental parameter F with respect to
its respective independent variables we can obtain the various
equations of state for the mixture. For example, the first derivatives
of Fas given by Eq. (7.56), with respectto T, V, and N, give equations
for S, p,and .. Of course, S = — (9F aT)is simply Eq. (7.55a), which
we have already written directly.

The pressure p is

dF J .
P 4Tay (11 2)] o

Since Vis only contained in the translational partition function, and
since the translational partition function is always present in Eq.
(7.57), we can write, from Eq. (5.28),

2T, V)., v(gf—’:;" T)" ’ (5.282)
Using this in Eq. (7.59) we obtain
T(Z NQ) -
o NkT
P = Z Naft (7.60)

v = V

But the well-known ‘‘partial pressure’ p, of macroscopic thermo-
dynamics is

N-kT

: (7.61)

P

so that we have obtained Dalton’s law in a formal way,

P=2 Pa (7.60a)
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Furthermore, since N = » N, = pV kT, we obtain another
familiar macroscopic relation,

Pa _ Na _ Na N
p N NNy

= X (7.62)

where N, is Avogadro’s number, N, N is the number of moles of
the « component, and x, is the mole fraction.

The chemical potential u,. of the components has particular
importance in regard to our study of mixtures, because it is the
driving potential for mass transfer. If we write F on a molar basis,
then

_ aF
He ™ a(Na N
and Eq. (7.56) gives
e = — kTN, In (2. No) (7.63)

Equation (7.63) can easily be put in the form in which it conven-
tionally appears in textbooks on macroscopic thermodynamics®
(Problem 7.16),

pa = RT|@a(T) + In p.l (7.64)

where

[i«TIZ(T. V)L.]

The function ¢., thus defined, clearly is dependent only upon T,
because the only V dependence in Z, is a linear factor [recall Egs.
(7.57) and (5.28a)]. Since ¢, is a familiar macroscopic parameter,
Eq. (7.65) provides a helpful microscopic basis for it.

) = — (7.65)

ENTROPY OF MIXING AND
GIBBS'S PARADOX

The adiabatic mixing of ideal gases is a process that lends itself
to a description by statistical mechanics. Suppose that a box of
volume, V, contains r gases separated into r subcompartments with
Ny, N>, ..., N, moles in each one as shown in Fig. 7.6(a).

The dividing partitions are lifted and mixing occurs. |f the initial
temperature is uniformly T, and the partitions are originally placed
so the pressures are the same in each one, then N V must equal
N, V,and

Uil.:h;n: - IZ Url - Ur'ilml

sSee, for example, M. W. Zemansky, Heat and Thermodynamics, 5th ed.,
McGraw-Hill, Inc., New York, 1968, sec. 16-11.
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Fig. 7.6 Mixing of r ideal-gas components.

] [ JJL— | i
\| '\.3 o I — \r
v, V, T v,
o L s
ta)  before mixing
i il! _ll[
r L = r
V= I Ny _——— V=2xv,
@ @
—LJ LS LS

(b} after mixing

For an ideal gas, Z U, is a function of the temperature T alone.

[

It follows that the final temperature must equal the initial tem-
perature. It likewise follows from

N N:x
Prinal = kTF = kT V.

that

Plinal = P1 = P2 == pg =-+-=p,

This process is a peculiar one in that it progresses spontane-
ously and irreversibly without degrading the potentials, T and p.
What it does degrade is the chemical potential u,. The potentials
T, p, and u, can be broadly viewed as potentials for heat, work, and
mass transfer. No heat or work is transferred in the process, re-
versibly or otherwise. But the potential for mass transfer Lo is de-
graded by the spontaneous flow of mass.

The increase of entropy can be computed for the mixing
process with the aid of Eq. (7.55a). First we evaluate the entropy of
the unmixed gases

u

= Zﬂ
Sii-lfiill - "f k; Na [in (N(;) T 1] (7.55b)
Substituting Eq. (7.63) in this, we obtain

u 125 /N,
Sinil'm[ = ? - ‘f—; (N: Mainitial — kTN,-,)
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and

1./ N.
-7 > (N: Hatina — kTNa)
Thus the entropy difference is expressible in terms of the changes
in the chemical potentials of the components,

1 N,
AS = _Tg: R‘: (Kainiciat — #aﬁ.--.al)

Finally, we use Eq. (7.64) for u, to reduce this to the conventional
entropy-of-mixing expression,

Asu\.ixim‘ =" k Z Nﬂ In (%) (?.66)

where p, now designates a partial pressure and is much less than
the pressure in a cell in Fig. 7.6(a). Alternatively,

N r
A\Sluixilu: = I‘VA RO g X In X (7.663}

This is known as the entropy of mixing and it arises from the
pressure portion of the chemical potential as given by Eq. (7.64). It
is strictly a result of mixing up molecules and in no way relates to

féo_ T. We have, in fact, already emphasized this aspect of its char-

acter in the context of Eq. (3.18). Let us briefly reconsider that
discussion.

Gibbs was perplexed by the following difficulty with regard to
the entrapy of mixing. If we mix 1 mole of oxygen with 1 mole of
helium we obtain Eq. (3.18), AS = R?In 4. If we mix 1 mole of oxygen
with 1 mole of nitrogen (which differs relatively little from it) we still
find AS = R?In 4. If we mix 1 mole each of two very similar isotopes
of oxygen, AS = R In 4, just as it did before. Finally, let us mix 2
moles of pure oxygen together. Suddenly AS = 0! It appears that
AS somehow varies discontinuously with the degree of similarity of
the gases.

This seemingly unreasonable result was called Gibbs's para-
dox. It was resolved by P. W. Bridgman, but only after the opera-
tional viewpoint of quantum mechanics had been established. He
pointed out that the mixing of molecules was an operation that was
physically meaningful only if means could be devised for determin-
ing whether or not an interchange of particles really had occurred.
Otherwise, mixing must be viewed as a fictitious operation and can-
not be said to have occurred. The uncertainty relation ultimately
provides the test that determines whether or not two particles are
different enough to be mixed.
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EXAMPLE 7.3 Suppose that you have to separate oxygen from
nitrogen in atmospheric air. What is the minimum work that would
be required to do this in, say, a steady isothermal isobaric process?

We know from the study of macroscopic thermodynamics that
the minimum work is given by

Wk, = Ag = Ah— T As

Since the air is approximately ideal, Ah = 0 in an isothermal
process. The change of entropy is given by Eq. (7.66a) with the sign
changed and N = N, M., to put the calculation on a unit-weight
basis. Then

Wk >~ TR.u(xx, In Xx, + X0, In X0,)
or

Wk, = 298°K(2.87 X 106 ergs g-°K)(0.79 In 0.79 + 0.21 In 0.21]

where we have used the known fractions of N> and O; in air. The
result is

Wk, = —4.39 X 106 ergs/g = — 147 ft-Ib;/Ib,,

where the minus sign indicates that work must be done on the sys-
tem to achieve separation.

This of course is only a limiting value. Real separation
processes always involve considerable inefficiency and require
much more energy.

CHEMICAL
FQUILIBRIUNM OF
REACTING

7.6 MIXTURES

EQUILIBRIUM
DISTRIBUTIONS

Our statistical-mechanical description of ideal-gas mixtures
must be altered slightly to accommodate the process of chemical
reaction. The counting of microstates is not altered by the fact that
a reaction is taking place, but the equations of constraint are
changed in two important ways.

In the first place,the number of moleculesin each component of
gasis not conserved. Conservation only applies to the total number
of constituent particles participating in the reaction. Furthermore,
care must be taken in writing the energy constraint. A difficulty
arises because the ground-state energy of a molecule generally
differs from the sum of the ground-state energies of the atoms that
react to form the molecule.
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Consider, as an example that clarifies these changes in the
statistical method, the equilibrium of the simple reaction

X +Y=XY (7.67)

The particles X and Y might either be atoms or molecules. The
thermodynamic probability for these three components is given by

Eq. (7.50),
T Ga™V ~
W= Iﬂl I:,I i X, Y, XY (7.68)
The conservation-of-mass constraints are
2 Nx,+ D Nxy, = Nx + Nxy = N, (7.69)
i=0 i=0
and
Z Ny, + Z Nxy; = Ny + Nxy = Ny, (7.70)
i=0

i=0

where Nx, and Ny, are the total number of X and Y particles — both
combined and free.
The conservation-of-energy constraint is

Z”Nx,.exk. + Z{}Ny,ﬁ,. + Z“Nn,(e_“-‘. - D)=U (7.70)
where Dy is the “‘energy of reaction.” The energy of reaction, also
called the energy of dissociation or formation (recall Sec. 7.3), is the
energy required to dissociate the XY molecule. A negative D, would
be the energy required to form the molecule. The energy of reaction
is measured above the ground state of the particle at rest — that
is, above the ground state of the particle at the absolute zero of
temperature. Figure 7.7 illustrates the relation among the energies
of X, Y, and XY for the case of an endothermic (energy consuming)
formation of the molecule.

The method of Lagrangian multipliersis again used to maximize
the thermodynamic probability subject to the constraints. The re-
sult (Problem 7.19) is?

Nx; = gx; exp ( ax — Ek\.;.) (7.72)
Ny, = gy, ex (— -—‘—‘-"‘) (7.73)
Yi = gYE P 'y kT .
and
Y T Du
Nxy, = gxy; €Xp [—ax — ay — (“;ﬂ— —)} (7.74)

“Care should be taken not to confuse the subscript « with the Lagrangian
multiplier e«,.
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Fig. 7.7 Relative energies for particles taking part in the endothermic re-
action X + Y = XY. In this case Dy is positive and is called the energy of dis-

sociation.
L §
__E v,
X3
fyz
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€x, exv, 1 _ ,
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() —— €y —— — —_ Yo— — q
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These can be written in the form

%}-‘;‘ = gZ): exp (—%) etc
where
Zx = ;gxl exp (—%) etc. (7.75)
We found in chapter 6 that
€% = ghlhT (7.76)

but in this case there are only two « multipliers, ax and ay. Thus

we have
Nx, = ewr[gx‘ exp (—%ﬂ .77
Ny, = e*‘w"‘TI:gv,- exp (—%)] (7.78)
Nxy, = e#xty “’“””[va.- exp (—E;—Y)] (7.79)
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THERMODYNAMIC
FORMULAS

Ostensibly, this is the conventional distribution for degenerate
boltzons, applicable to each component. However, the equilibrium
must be subject to an additional restraint. This is a restraint that
restricts the proportion of X, Y, and XY particles, or the extent to
which the reaction has progressed. We can obtain this restraint by
rearranging Eqgs. (7.77), (7.78), and (7.79) and introducing Eq. (7.79),

Nxy ) (sz‘r) B (.ux + py + Do — pux — .HY)
(NXNY ANzr ) P kT

= exp (%:) (7.80)

This is the law of mass action in the first form in which we see it. It
fixes the equilibrium proportions of particles Nx, Ny and Ny sub-
ject to the constraints Nx 4 Nxy = Nx, and Ny + Nxy = Ny,

Before we move to some of the very important ramifications of
the law of mass action it will help to extract the basic thermody-
namic relations from the preceding statistical-mechanical develop-
ment. The entropy is given by the appropriate extension of Eq. (7.4),

_ U - nyDn J._ = Zﬂe Ny
S = — 7 kln [I.,I (Nn) ] (7.81)

and the fundamental equation is

F(T, V, Nx, Ny, Nxy)=U—- TS
L Z.,e Ny
= —kTin]] (N—) — NxyDo (7.82)

Some of the results that can be obtained from this include

IF kT
p=—3y =7 (Nx + Ny + Nxv) (7.83)

and the chemical potentials

__9F _ _ Zx )]
KX 9(Nx/Nw) ~ N""T['” (Nx (7.84)
U Zy )]
M SNy /N N-“"T['" (NY (7.85)
and
. JF - Zxy -
HXY = d(Nxy/Na) = N.akT[In (N\Y)] N 4Dy (7.86)
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With the help of these relations we can recast the law of mass
action in the form

HXY = px + py (7.87)

Thus we can anticipate that the equilibrium establishes itself at the
point at which the potentials for mass transfer are balanced be-
tween the combined and uncombined components.

LAW OF MASS ACTION
The law of mass action provides the means for predicting the
extent of reaction as a function of temperature. We wish to put the
law into a form that is convenient for this purpose. If we first define
a quantity called the equilibrium constant K

_ Ixx HD_U)
K(T, V) = TiZy exp (kT (7.88)
then the law of mass action as stated in Eq. (7.80) becomes
Nxy
NeNy ~ K(T, V) (7.89)
With the inclusion of Eq. (7.61) this can be recast as
pxy _V Y Zxr g (2)
pepy kT KTV =153 7 2. P kT (7.90)

But Z ~ V, so the terms in Eqg. (7.90) are dependent only upon tem-
perature. We therefore define another form of equilibrium con-
stant, K, = (V/kT)K, which, with the help of Eq. (7.62), becomes

Pxy Xxy 1
= KT 7.91
PxPy  XxXy p A7) (7.9

Once K, is known, and it is plainly calculable, the equilibrium mix-
ture can easily be computed using Eq. (7.91).

GENERAL CHEMICAL
REACTIONS

The relations developed thus far in this section have been re-
stricted to the reaction X + Y = XY for purposes of simple illustra-
tion. All these results can readily be extended to treat a general
chemical reaction,

r

0= vaXa (7.92)

a=]
The v,'s are stoichiometric coefficients and they are positive for the
products and negative for the reactants. The X,'s are the participat-

ing molecules. In the reaction 2H: + 0.—=2H:0, for example,
Xi=Hs py = —2; Xa =03, 1 = —1; and X5 = H.0, v; = 2.
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We leave as an exercise (Problem 7.21) the development of
three forms of the law of mass action for a general reaction,

2 Vatta = 0 (7.93)

K(T, V) = (II Ze ) exp ( ) II Ny« (7.94)

or

KAT) = (II (ZKT) VY ) exp ( ) Il Pa’n = II (pxa)y«  (7.95)

The equilibrium constant, which has thus far been expressed
in terms of microscopic parameters, is also expressible in terms of
macroscopic variables.!® Equation (7.93) provides an immediate
expression for the law of mass action in terms of the macroscopic
variable u,, the chemical potential. In pure gases we know that
p = g, the molar Gibbs function, is

g = R'T(¢ + Inp) (7.64a)

It is thus conventional to define a quantity Ag called the ‘‘free
energy change of the reaction,” which bears some similarity to
Eq. (7.93):

AG = D VaQa = R"T(Z Vate + IN pr"u) (7.96)
This is the change in the Gibbs ‘‘free energy”’ of the products
(taken as pure components at pand T) as they go to an equilibrium
proportion (where the products and reactants are all pure com-
ponents at p and T).

If we now go to Eq. (7.95) with Eq. (7.64), we can show that

In K(T) = — Zy Va®a (7.97)

This demonstration is left as an exercise (Problem 7.22). It requires
recognition of the fact that Dy kT is counted into the ¢ for one of the
reactants [recall Eq. (7.86)]. Then Eq. (7.96) becomes

Ag = —R°TIn [5’5-] (7.98)

But K, has the dimensions of p¥*«. Thus we can get rid of p**« by re-
ferring Ag to a pressure of unity in the dimensions of pressure in

I0These relations are conventionally developed in texts on classical thermo-
dynamics. See, e.g., Zemansky, reference 8, chap. 17.
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which K, is expressed. Usually atmospheres are used as the di-
mensions of pressure and a standard Ag is defined at 1 atm. Thus

Ag® = —RTIn K, (7.98a)

Equation (7.98a) is convenient because the free energy Ag' is
often provided directly by experimental chemists, and K, can be
obtained from it.

Another thermodynamic measure of a chemical reaction is the
“‘heat of reaction,’” or the enthalpy change, Ah, of reaction,

r

Ah =D vaha (7.99)
The specific enthalpy h, of the components is easily shown (Prob-
lem 7.23) to be
a¢u

= — P0T2 XX
he = —ROT2 =% (7.100)

Thus

: a¢ﬂ
ah = =2 vROT2 55

[+

so, with the help of Eq. (7.97),

Ah = ROT2 dirin K.(T) (7.101)

This important result is called the Van't Hoff equation. It dis-
plays a curious kind of physical behavior. It shows that if a reaction
is endothermic, Ah is positive and the equilibrium constant rises
with temperature. In so doing it tends to shift the equilibrium to-
ward completion. However, completing the reaction cools the sys-
tem and opposes the reaction.

By the same token, an exothermic reaction generates heat to
raise the temperature, but that reduces K, in this case and opposes
completion of the reaction. Hence there is a tendency in this
process for a kind of secondary opposition to arise against comple-
tion. This inherently stable behavior is a more general feature of
physical systems than we might at first imagine. The stability of
chemical reaction indicated by Van't Hoff's equation is predicted
by the principle of Le Chatelier and Braun,'' which addresses the
stability of processes in a very general way.

llSee, e.g., Callen's discussion of the principle of Le Chatelier and Braun,
Thermodynamics, John Wiley & Sons, Inc., New York, 1960, chaps. 8 and 12.
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Table 7.4 presents a few numerical values of Ah and K,. These
data are very often developed experimentally. However, we now
have the means for predicting either quantity directly from micro-
scopic parameters.

TABLE 7.4 Some Typical Values of Ah and K,(T)

In K.(T),
Reaction Temperature, °K Ah, cal/g mole pressure (in atm)

CO+ 10,=CO0; 298 — 103.768
500 —67,754 57.622

1000 —67,601 23.535

2000 — 66,247 6.641

3000 - 0.972

5000 - —3.191

H24 §{ 02 = H20 298 —57,798 92.214
500 —58,286 52.697

1000 —59,199 23.169

2000 —60,296 8.151

3000 — 3.092

5000 - —0.990

31 H24+ OH = H:0 298 — 106.023
500 — 60.167

1000 — 25.973

2000 — 8.695

3000 — 2.913

5000 — —1.706

CO + H20 = CO2 + H2 500 —9467.3 4.907
1000 —8402.6 0.327

2000 —5951.2 —1.542

20 =02 298 — 186.988
500 — 105.643

1000 — 45,163

2000 — 14.635

3000 - 4.370

5000 — —3.882

2N = Nz 298 - 367.493
500 — 213.385

1000 — 99.140

2000 — 41.658

3000 - 22.372

5000 - —6.820
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DEGREE OF REACTION

The '‘degree of reaction’ is a measurc of the extent to which a
reaction has progressed. We develop the concept with the aid of the
following illustrative example.

EXAMPLE 7.4 Suppose that Ny, moles of H,S participate in the

reaction

HaS + 2H-0 = 3H; +

S0,

Devise a means for expressing K, in terms of the completeness of

reaction.
For this reaction

K., =

Xm}Xsm_ 1.0

P = 5
Xi.8XH,0°

The “‘degree of reaction,” ¢, is defined in such a way that

No — Nys
€ = —

€

No

- ZN{) - Nligl'
- 2Ny

Ny,

‘73N,

€ =

N N;;(\:
N N[I

Itis, in other words, the percentage departure of the reaction from
the state of pure reactants, and it can be expressed in terms of N,
moles of any of the participating components. Our choice of H.S was

arbitrary in this example.

The reaction is complete when ¢ = 1.

We can then express the mole fractions in terms of ¢

so that

1—¢
XH.8 = 31e
2 — 2
Xi.0 = 3 4 e
-
3¢
XH, = -
T €
€
XS0, = é"‘:_(_

27¢

K, =

G+ol— o — 2P
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This result illustrates how the equilibrium mixture can easily be
calculated once the equilibrium constant is known.

IDEAL
DISSOCIATING
7.7 GASES

‘“‘Dissociation’’ is merely a name that is given to a particular
class of chemical reactions: the dismantling of molecules that
occurs when they are exposed to very high temperatures. Dissocia-
tion does not differ in principle from any other kind of chemical re-
action. However, there is great practical interest in dissociation, as
it occurs in conjunction with heat-transfer and fluid-flow problems
for a variety of aerospace situations. The phenomenon of dissocia-
tion requires special handling if it is to remain tractable within the
context of a complicated flow problem. In particular, we need to
introduce approximate means for handling dissociation if such
problems are to find usable solutions.

DISSOCIATING DIATOMIC GAS
In the simple dissociation process X; — X + X, ¢ is called the
‘‘degree of dissociation” and is defined in the same way as the

degree of reaction:

Nx number of dissociated X atoms

N};, ~ total number of X atoms in the mixture @102

€ =

The equilibrium state of a dissociating diatomic gas is dictated by
the constraints

N_Yz - Z.\u %
and
Nx + 2Nx, = Nx, (7.104)

We should be aware that Zx_ as we use it here is defined somewhat
differently than it was in the context of Egs. (7.19) and (7.21). At that
point we absorbed exp (Do/kT) into the definition of the partition
function. Here (as in Sec. 7.6) it proves useful, for purposes of com-
putation, to separate it. Equations (7.102), (7.103), and (7.104) then
combine to form

1—e_ ,y Zx (@)
= 2Ny, S5 ex (7 (7.105)

The characteristic temperature of dissociation ) can be de-

fined just as any other characteristic temperature,

Do
B = =° (7.106)
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and the mass density of the mixture is

o= EXT/’F-’& (7.107)

When these expressions are included in Eq. (7.105) it becomes

e _ mx Z% (_2)
1=~ 2oV, exp 7 (7.108)

And since Zx2/VZx, is independent of V, we find that ¢ = ¢(p, T).

Equation (7.108) is the governing equation for the dissociation
equilibrium of a symmetric diatomic gas. It is, of course, the law of
mass action for dissociation. The characteristic temperature, which
appears in an important way in this expression, proves to be a
temperature at which dissociation is virtually complete. It is often
quite high — on the order of 105 °K for N, and O, — but partial dis-
sociation still plays an important role at temperatures of practical
interest.

The fundamental equation for dissociation equilibrium is
merely a special case of Eq. (7.82),

N3 Nxs
F(T, V, Nx, Nx,) = —kT1In [(Z—"e) ‘(z"’e) ) :| — Nx,Do (7.109)
Nx Nx,

We are particularly interested in two of the thermodynamic proper-
ties obtainable from the fundamental equation p and U or c,. The
pressure is

dF kT
P==3v= 7V (Nx + Nx,) (7.110)

With the inclusion of Egs. (7.102), (7.104), and (7.107) this becomes
p = (1+epRx,T (7.111)

where Rx, = R°/Mx, or k/2mx. This is very similar to the ideal-gas
law for pure X; with a ‘‘compressibility factor,'” Z. Unlike the com-
pressibility factor, 1 + €(p, T) is bounded between 1.0 (no dissocia-
tion) and 2.0 (complete dissociation).

The internal energy U of a dissociating gas is

9F 3 (F
= — T = 20
UsF+TS=F-To=~T [ar(r)]

from which we obtain

3 a
U= kTI(Nx 57N Zx + Nx, 5=In zx,) — Nx,Do  (7.112)
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Introducing ¢, ®p, and p into this expression we can obtain the
following expression for the specific internal energy:

u

d d
= = _ReT2 2. 2 ) — ) ;
u oV Rx,T [ZeaTln Zx +(1—¢€) aTIn Z;,,]

— (1 — ORx,0p (7.113)

But we have, in accordance with Eq. (3.23),
u=u(T) = erimz
oT

so, because Rx = 2Rx,, Eq. (7.113) takes the form
u=eux + (1 — eQux,— (1 — Rx,0p (7.114)

Equation (7.114) is a curious result in thate = €(p, T) introduces p de-
pendence into u. Thus udepends upon both p and T, instead of just
T alone as it would for a nonreacting gas.

With Eq. (7.114) the calculation of u would seem to become quite
a simple matter because the internal energies of the components X
and X; can usually be obtained easily. Consider, for example, the
dissociation of an ideal gas that obeys the rigid-rotor harmonic-
oscillator approximation and for which the electronic contribution
is in the ground state. We are able to improve upon this representa-
tion shortly, but for this case

ux, = § Rx,T (7.115)
and
ux = 3§ RxT or 3Rx,T (7.116)
so, from Eq. (7.114), we finally get
u(p, T) = Rx, [7 E . 1- E)(‘)D] (7.117)

Despite its appearance, Eq. (7.117) is actually fairly cumber-
some for use in connection with fluid-flow problems because ¢(p, T)
has to be obtained from Eq. (7.108) or some comparably intractable
relationship.

We clearly need some means for dealing with e = ¢(p, T). In 1957
Lighthill'2 proposed an approximate form of Eq. (7.108) which places

12M. J. Lighthill, "Dynamics of a Dissociating Gas,” J. Fluid Mech., 2, No. 1
(1957), part |. The interested reader will find that Lighthill’s textbook style
and clear insight makes his paper well worth studying.



202

thermostatic properties of ideal gases

the analysis of dissociation equilibrium in fluid-flow problems with-
in grasp. He began by defining a ‘‘characteristic density for dis-
sociation’ pp. With reference to Eq. (7.108) this is

mx Z%
P> =Sy Z_x.,. (7.118)
so that
€ _mw _&))
-, exp( ; (7.119)

For a rigid-rotor harmonic-oscillator molecule, in which transla-
tion and rotation are fully excited but vibration is not, the ratio
Z3%/Zx. can be written as follows:

2% _(@Zx2 1 1 (Zx)
Zx, (Zx.) (@x.) (Zx)e (Zx.).

Equation (5.28) is then used to evaluate the translational partition
functions. Equation (5.34b) in Sec. 7.4 expresses (Zx ), using a sym-
metry number of 2, because we are primarily interested in air, and
the oxygen and nitrogen atoms in their molecules are indistinguish-
able. We noted in Sec. 7.3 that the vibrational partition function
must be modified to account for the absorption of the ground-level
vibrational energy into the dissociation energy. Accordingly, (Zx ).
is expressed by Eq. (7.20a). Thus

2| (rmarye) (0] L g (_9)] 2]

Zx, |\ m 7 | T/ 1@x
translation rota‘tion vibrétion electronic

Since electronic excitation usually occurs at temperatures > 10°°K,
the electronic partition functions can frequently be replaced with
the ground-state degeneracies [recall Eq. 7.23)]. When this is the
case, Eq. (7.118) becomes

_ o Tk N T ey (@32
pp = m_\( e ) - \T(L—¢€ )(Qx._.)‘- (7.120)
Numerical values of pp are, fortuitously, very insensitive to tempera-
ture. The values computed by Lighthill are given in Table 7.5 to
illustrate this for oxygen and nitrogen. In each case an approxi-
mately constant pp is suggested for computation.

The basis of Lighthill's approximate model is to replace pp with
this constant value in Eq. (7.119). This is, of course, a vast simplifi-
cation over the law of mass action for dissociation given by Egq.
(7.108). It can, in fact, be plotted once and for all for any dissociation
process on the dimensionless coordinates, e versus T ), versus
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TABLE 7.5 Characteristic Densities of Oxygen and Nitrogen in the
Temperature Range 1000°K < T < 7000°K

P (g/'em?) when T (°K) is: Suggested
Ep, [~ |—' constant pp,
“K 1000 | 2000 | 3000 | 4000 | 5000 6000—{ 7000 g/cm?
Oxygen 59,000 145 170 166 156 144 133 123 ~150
Nitrogen 113,000 113 135 136 133 128 123 118 ~130

pp/p. This has been done in Fig. 7.8, and the result shows that
dissociation tends to be complete at temperatures well below Op
for pp's of practical interest.

Lighthill's model leads to an improved expression for the
specific internal energy because it carries with it the implication
that the term (7 — €) 2 in Eq. (7.117) should be approximated as 3.
To show how this comes about let us write Eq. (7.118) as

d i)
ﬁlnz_\_.\z{,’—rlnzx (7.121)

where we take p, to be approximately independent of T. Then, in
accordance with Eq. (3.23),

ux (T) ~ 2ux(T) (7.121a)

Equation (7.121a) disagrees with Egs. (7.115) and (7.116), but it would
agree perfectly if the vibration of X; were only half-excited. This, in

Fig. 7.8 Graphical representation of Lighthill's approximate equilibrium dis-
sociation equation, €2 (1 — €) = (p, p) exp (—¢1,,/T).
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all probability, is more reasonable than taking it to be fully excited.
Thus

ux(T) >~ 2ux(T) = 3Rx,T (7.121b)
and Eq. (7.114) becomes
ulp, T) = Rx, BT — (1 — €)Oy] (7.122)

This is both more accurate, and far simpler, than Eq. (7.117).

The pressure, Eq. (7.111), is unchanged under Lighthill's ap-
proximation. Other properties have been worked out in detail by
Lighthill. Vincenti and Kruger'? also present a detailed discussion
of ideal dissociating gas properties.

IDEAL TONIZING

7.8 GASES

IONIZATION

Dissociation is not the only way in which a particle can go to
pieces at elevated temperature. At generally higher (but often over-
lapping) temperatures, orbiting electrons can be excited to the
point that they, too, begin to separate from their parent atoms.
This process is called ionization. In the monatomic gas helium, for
example, the reaction

He = He" 4 e

in which one electron is stripped off, is 2 percent complete at about
15,000° K.

Whereas a dissociating gas consists of neutral particles, the
stripped helium atoms are positively charged and the free electrons
are negative. When the total negative electronic charge of such a
mixture (or plasma, as it is often called) equals the total positive
charge of the ionized particles (atoms or molecules), the plasma is
said to be neutral. The thermodynamic analysis of ionized gases
may be quite different from that of dissociated gases, as a conse-
quence of the difference in interaction among charged particles as
compared with that among neutral particles. Of course this is not
the case when gases can be treated as ideal and interactions can
be neglected. Still, ionization reactions have other special features
which are important even for ideal gases and which we shall want
to treat.

W, G. Vincenti and C. H. Kruger, Jr., Introduction to Physical Gas Dynamics,
John Wiley & Sons, Inc., New York, 1965, chap. V.
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IONIZATION EQUILIERIUM OF
SINGLY IONIZED GASES

As the temperature of a plasma increases first one electron
will be lost to a particle, then two, and so forth:

The particle X* with one electron removed is said to be singly ionized,
X** is doubly jonized, and so on. We restrict this discussion to a
singly ionized neutral plasma.

We also restrict our discussion to ideal gases: so the single
ionization reaction, X = X* + e, becomes formally identical to the
dissociation reaction and the results in the preceding section are
directly applicable. The law of mass action, for example, can be
written down directly in form similar to Eq. (7.108),

€ mx(Zx)Z _@i)
1=~ oV 2z exp( T (7.129)

where ¢ is the **degree of ionization,”

Nx* number of ionized particles (7.125)
€= = T e .
N+, number or originally neutral particles

the characteristic temperature for ionization ©,is 7 k: and [ is the
ionization energy of the particle. Table 7.6 presents numerical
values of O, for typical atoms. These temperatures all exceed
10° °K, but ionization, like dissociation, becomes important while T
is still well below (.

TABLE 7.6 Electronic Energy States of Gases

Atomic Zx). Zx+).

Gas weight G, °K (T in °K) (Tin °K)
Hydrogen 1.008 157,800 2 1
Helium 4,003 285,300 1 2
Nitrogen 14.01 168,800 4 + 10 exp (—27,700/T) 94 5 exp (—22,000/T)
Oxygen 16.000 158,100 94 5 exp (—22,900/T) 4 410 exp (—38,600/T)
Neon 20.183 250,200 1 4+ 2 exp (—1,126/T)
Argon 39.944 182,840 1 4 4+ 2 exp (—2,063/T)
Xenon 131.3 140,200 1 4 + 2 exp (—15,200/T)

Once again, the degree of ionization depends upon both p and
T in accordance with Eq. (7.124). The dependence again is ex-
pressed by writing out the partition functions. Since the only con-
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tribution to (Z.)... is the ground-level degeneracy of an electron
g., = 2, we have

32
Zrm..kT) (7.126)

Z. = (Z)ulZ) = 2v(_h2

Furthermore, (Zx7). >~ (Zx): since the masses of X and X* are nearly
the same. Thus Eq. (7.124) becomes

EE - = n_]_\.- Zﬂ'm.-kT 2UE (zx;.)u:l (_(-_)j>
=<~ %% ( h? ) G P T D

The pressure expression that we developed earlier,

kT
p =7 (Nx + Nx* + N) (7.83a)
is true for any ideal gas mixture. In this case it becomes
Aok
p=(1+ E)mxT (7.128)

Substitution of this expression in Eq. (7.127) gives the conventional
form of the law of mass action for an equilibrium ionized gas,
€ 2am.\ 32 (kT2 (Zx*Yim ( (']:)
=2 —— 7.129
g ( 2 ) b Cow P\"T) 19
Since the temperature dependence of Zx* and Zx is roughly the
same, we can see that the degree of ionization should rise sharply
with temperature but will drop off with pressure. Figure 7.9 illus-
trates this behavior for singly ionized helium.

SAHA EQUATION FOR SINGLY
IONIZED MONATOMIC GASES

For monatomic gases the internal partition functions reduce to
Z., and this in turn is usually a constant g.. Thus Eq. (7.129) takes

the form
€2 T2 (-);)
_ —— 5|
=2 Cpexp( 7 (7.130)
where Cis a constant, expressible as
2}Tml' 3z (Z_\ P)i:lt
C=2? k32 7.131
( 2 ) @) (7-131)

Equation (7.130) is named the Saha equation after the man who de-
rived it in 1920 on the basis of purely classical thermodynamic
arguments.

As a numerical example, let us apply the Saha equation to
helium. Using data from Table 7.4 we obtain C = 0.760 x 10°(°K) 52
(atm). Equation (7.130) then becomes

1 p 285,300)] 12
=14+ - P 132
‘ [1 " 0.760 x 10° rﬁ-ze"p( T (el
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Degree of jonization e

Fig. 7.9 Degree of ionization for singly ionized helium.
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Equation (7.132) is the expression that was used to plot the curves
shown in Fig. 7.9.

In employing the Saha equation care must be taken as to
whether the electronic energy levels are indeed unexcited. If they
are excited, a modified form of the Saha equation accounting for
these excitations should be used.'* Furthermore, since the Saha
equation is applicable only to ionized gases at thermodynamic
equilibrium, it must be modified again for systems that are not at
equilibrium.

The analysis presented here may be readily extended to
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multiple ionization processes.!* It is also possible to develop an
approximate analysis for ionizing gases similar to that of the Light-
hill dissociating gas.'s

Problems 7.1 Complete the missing steps in the derivation of Egs.(7.3a)
and (7.5).

7.2 Prepare a table expressing the thermodynamic properties
of an ideal monatomic gas, based upon both distinguishable and
indistinguishable classical particles. Express extensive properties
on a molar basis. Show any derivation not worked out in the text.
Discuss the practical ramifications of the indistinguishable char-
acter of particles in the evaluation of thermodynamic properties.
Consider T and V to be independent variables.

7.3 For anyideal monatomic gas of your choosing, evaluate the
absolute entropy at some point (a) using classical thermodynamics
and experimental data, and (b) using the Sackur-Tetrode equation.
Do not choose mercury vapor.

7.4 The fundamental equation for an ideal monatomic gas was
given by Eq. (1.23), but certain constants were not evaluated. Lump
the constants together and show how to obtain a numerical value
for them for the case in which Sy = 0.

7.5 Verify Egs. (7.23) and (7.24).

7.6 Obtain the classical specific heat for diatomic molecules that
rotate, translate, and vibrate, using equation (7.26).

7.7 A system of N linear harmonic oscillators at 300°K has a
fundamental frequency of 10'? rad, sec. Use the Boltzmann distri-
bution to determine what fraction of the oscillators occupy each of
(at least) the first four energy levels. Does your result appear to be
reasonable (a) in view of the value of ),; (b) in view of the constraint,
> N, = N?

7.8 Compute the characteristic temperatures of translation, ro-
tation, and vibration for nitrogen at room temperature. (This re-
quires finding data for certain molecular properties.)

7.9 Verify Eq. (7.31).

7.10 Derive the correct form of Eq. (7.38a) for a general value of
spin degeneracy.

7.11 Evaluate the molar Gibbs function for oxygen at 4000°K and
1 atm. Report the portions attributable to translation and to the in-
ternal modes of energy storage. What percentage is contributed by
Z..? How does the portion attributable to translation compare with
a value of g predicted by the Sackur-Tetrode equation?

1*A. B. Cambel, D. P. Duclos, and T. P. Anderson, Real Gases, Academic
Press, Inc., New York, 1963,

15D, P. Duclos, D. P. Aeschliman, and A. B. Cambel, Am. Rocket Soc. J. 32,
641 (1962).
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7.12 Compute ¢, for the gas in Problem 7.11. Consider the cor-
rection terms.

7.13 Redo Example 7.2 at 50°K. What terms are negligible in this
case and why?

7.14 Derive the moments of inertia shown in Fig. 7.4. Evaluate
-4, Is_s, Ip_p, and Ic_c numerically for methane (Fig. 7.3).

7.15 Derive Egs. (7.53) and (7.54) taking care to evaluate the mul-
tiplier 3.

7.16 Verify Eqgs. (7.64) and (7.65). Compare Eq. (7.65) with the
equivalent expression obtainable from macroscopic thermo-
dynamics.

7.17 A new gaseous organic compound, called krypto-olefacto,
can be made by either of two processes. One day it is discovered
that a certain bootlegger from the hills of Eastern Kentucky —
Nimrod Probiscus, by name — can smell the difference between
the products of the two processes. However, no other test will
make the distinction. Thereafter the gas is named k-l or k-11, ac-
cording to the process that makes it. Suppose that 2 moles of k-I
and 3 moles of k-1l at the same temperature and pressure are
mixed adiabatically. What would AS, ... be in cal /°K? Now assume
that Nimrod dies a moment before mixing occurs and compute
AS,ixine- Discuss your answer fully,

7.18 ni moles of an ideal gas at pressure p, and temperature T
are separated from n. moles of another ideal gas at pressure p;
and temperature T, in an adjoining container, separated by a mem-
brane. The membrane is then broken.

(a) What is the final pressure of the mixture?

(b) What is AS,ixin.?

(c) What would AS,;.i,. have been if the gases had been
identical?

(d) ProvethatAS,.;.,. fortwo different gasesis the same as
the sum of the entropy increases associated with two
free expansions.

7.19 Verify Egs. (7.72) through (7.75).

7.20 Verify Eqgs. (7.83) through (7.87).

7.21 Verify Eqs. (7.93), (7.94), and (7.95).

7.22 Verify Eq. (7.97).

7.23 Verify Egs. (7.100) and (7.101).

7.24 Use the data in Table 7.4 to verify Van't Hoff's equation,
graphically.

7.25 Determine the equilibrium composition of H,0 after it has
been heated to 2800°K. Assume that the H.O decomposes into H,
02, and OH but that there is no free hydrogen. Note that there are
two equilibrium constants, each expressible in terms of two degrees
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of reaction — one for decomposition into H; and O; and the other
for decomposition into Hz and OH.

7.26 Check Lighthill's computation of pp for oxygen. (Zo)e =3
and (Zp). ~ 9.0, = 2.08°K and 0, = 2230°K.

7.21 Consider an isentropic compression of argon from an
original temperature of 300°K and p = 1.536 x 10-4 atm. Plot p
versus T in the range 5000 to 15,000°K (a) for the nonionized case,
and (b) for the ionizing process. Present the equation relating p, T,
and ¢, and indicate the degree of ionization at several points on the
curve. Discuss the comparison.

7.28 Derive an expression for the speed of sound in a singly
ionized monatomic gas for which the electronic states are un-
excited. The expression should give the sound speed as a function
ofeand T. Compare the result with the sound speed of the same gas
without ionization.



statistical-mechanical
ensembles

8.1 ENSEMBLE CONCEPT

LIMITATIONS OF PREVIOUS

METHODS

The “‘actuarial”” methods of statistical mechanics are farther
reaching than the preceding chapters might indicate. By concen-
trating upon the behavior of systems of independent particles, we
have been limited to the treatment of a class of fairly simple sys-
tems — ideal gases, for example. By taking particles to be inde-
pendent we could focus attention on the single particle. The
important concepts have been the energy levels of jsolated par-
ticles, the distribution functions for independent particles, and
so on.

And, up to now, we have always looked at a group of particles
and asked: What is its most probable macrostate? We then accepted
this as the macrostate that would occurin nature. Itis not really the
one that occurs, however. There are myriads of other macrostates
that are almost as probable and very nearly identical in their prop-
erties. Only those macrostates that differ perceptably from the
most probable one become extremely improbable.

211
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Furthermore, we have imposed constraints of constant energy
and (for all instances except the photon gas) of a constant number
of particles. These constraints limited the scope of the problems
that we could deal with.

The statistical mechanics that has been the subject of our inter-
est up to now is, in fact, a special case of a much more general
theory which, for example, treats interdependent particles. We
have chosen to discuss the special case first because it offers a
direct, convenient analysis for a wide range of important practical
problems, as we found in chapter 7. Beyond this, it also provided a
simple structure upon which we can now build the more general
theory in a reasonable pedagogical sequence.

In contrast with our previous considerations, in which we looked
at a single system or group of particles, we now want to make a
statistical analysis of a large number or “‘ensemble,’ of identical
systems. It is therefore called the ensemble theory.

SYSTEMS AND ENSEMBLES

Conjecture now that our world is duplicated in many parallel
universes. Any system — say a container of gas — is reproduced
identically in each universe with the exception of random fluctua-
tions on the microscopic level. We then ask how the ensemble of
parallel systems behaves.

The ergodic hypothesis (or the ergodic ‘‘surmise’’) proposes that
this ensemble exhibits the same average properties in space as a
single system exhibits in time. However, it is possible, as we soon
discover, to relax the constraints that dictate the behavior of a
single system when we treat the ensemble of parallel systems.
Specifically, the ergodic hypothesis says that the ensemble average
of any property is the same as the time average of that property for
the single system.

One way to calculate the actual behavior of a system is to cal-
culate its time-average behavior over a period that is much longer
than, say, the average period between molecular collisions. Such a
computation is, of course, impractical because of the massive
difficulties involved in treating so many particles. The use of classi-
cal mechanics does provide some important criteria for the general
characteristics of large systems of particles. These methods were
especially evident in the early development of statistical me-
chanics,' although we do not elaborate these ideas here. There are
more complications, however. For example, there are questions as
to the uniqueness of the resulting average with respect to the initial

'See, especially, J. W. Gibbs, Elementary Principles in Statistical Mechanics,
Yale University Press, New Haven, 1902; Dover Publications, Inc., New York,

1960.
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conditions and with respect to the length of time over which the
average is made.

Faced with these difficulties, Gibbs? apparently concluded that
it is not fruitful to try to form time averages of a single ensemble.
Instead he chose to limit consideration to an ‘“‘ergodic ensemble"’
of systems —a collection of systems that obeys the ergodic hy-
pothesis — at the present moment. The simplification lies in the
fact that the average behavior of a suitably chosen collection of
systems is mathematically easier to treat than the complex time-
dependent behavior of a single system.

By way of illustration let us consider the problem of two effi-
ciency experts who want to learn whether they can speed the noon-
time movement of customers through a crowded downtown
lunchroom by charging money for the second cup of coffee. They
must learn how much expensive seating capacity is lost to cus-
tomers who leisurely sip the free cup that is now made available.
One expert identifies 10 customers as they enter and he records
the time they spend eating and the time they spend sipping. He is
observing the behavior in time of a ‘‘system” of 10 people. The
second expert appears at the time of peak loading and photographs
the entire lunchroom from a balcony. He then has information as to
the state of the ““ensemble’’ of all systems of 10 people, and can
obtain the same information by establishing the percentages of
eating and sipping customers at the instant. The observation made
by the second expert is simpler and it provides more information.

This example can probably be as helpful to us by virtue of its
weakness as by its strength. The weakness lies in that the en-
semble might not be ergodic. It might, for example, turn out that
the ‘‘system’ that enters at 11:50 A.m. is composed of representa-
tives from middle management who have come to conduct busi-
ness over a slow lunch. The 12:10 p.m. arrivals, on the other hand,
might be wage earners with a 40-minute lunch hour. The lack of
ergodicity in this case could lead to disagreement between the
experts and result in a money-saving strategy that would only
hurt business by driving away the hurried lower-income group.

BASIC POSTULATES
The first postulate in Gibbs’s approach is, then, that whatever

ensemble we set up must be ergodic. And this in turn entails the

2J. W. Gibbs was this country's first Ph.D. in mechanical engineering (Yale,
1863). Although his thesis dealt with the forming of gear teeth, heis known to
us as the greatest mathematical physicist this country has produced. He
formulated vector analysis, chemical thermodynamics, and the foundations
of statistical mechanics, among other accomplishments. His organizational
work on statistical mechanics followed Boltzmann's introductory work by
about a quarter of a century.
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assumption that ergodic systems exist. Boltzmann introduced the
idea of an ergodic system and invented the name in 1887. He com-
bined the Greek ergon (meaning ‘“‘work’') with hodos (meaning
“‘path’’) to evoke the idea of a constant-energy path. Strictly speak-
ing, an ergodic system is one that ‘‘moves’ on a constant-energy
surface in phase space and whose path sooner or later touches all
points in that surface.

The surmise that an ergodic system of particles exists is in-
tuitively compelling but, interestingly enough, is not strictly true.
There exist states of motion of the molecules of a gas, for example,
that cannot be reached from other states of motion. Consider, for
example, a group of particles in a box, all bouncing back and forth
in the same vector direction but in different paths and at different
speeds. No collisions would occur to disrupt the configuration, and
other configurations would be unreachable. Fortunately, such ex-
ceptions are sufficiently remote that they do not seriously alter the
usability of the ergodic surmise in problems of gas behavior.

Actually some mathematical justification of the ergodic surmise
can be made under certain abstract assumptions that cannot be
fully justified physically. Khinchin,3 for example, does this for an
infinitely long time average. Nevertheless, the final justification for
assuming the systems in an ensemble to be ergodic is really to be
found in the success of the theory that can be erected on the as-
sumption.

The principle of equal a priori probabilities, which we have used
extensively in the past, must be used again in the following way:
Each system in the ensemble must be in one of the microstates
consistent with the imposed constraints and each of these system
microstates is equally likely. Sometimes this is called the funda-
mental postulate of statistical mechanics because it is so broadly
used. It took a slightly different form in Sec. 3.1.

In the formulation of classical statistical mechanics, which em-
ploys the classical laws of motion, this completes the assumptions
needed. In the formulation of quantum statistical mechanics, how-
ever, an additional postulate is needed. This is the so-called
principle of random phases. It says that ‘‘equilibrium may be re-
garded as an incoherent superposition of (quantum) eigenstates.”™#
Reference should be made to more advanced textbooks for de-
tailed discussion of this idea.

A, 1. Khinchin, Mathematical Foundations of Statistical Mechanics (English
translation from Russian), Dover Publications, Inc., New York, 1949.

4K. Huang, Statistical Mechanics, John Wiley & Sons, Inc., New York, 1966,
p. 185.
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TYPES OF ENSEMBLES

Since an ensemble is a collection of identical systems subject to
a common set of constraints, our choice of constraints will resultin
different kinds of ensembles. There are three conventional kinds of
constraints commonly used to define three conventional kinds of
ensembles. The latter are called the microcanonical, the canonical,
and the grand canonical ensembles. The recurring word ‘‘canonical”
assumes different meanings in a dictionary. It is used here in the
sense of something that is authorized, recognized, or accepted.
Gibbs probably intended to designate these ensembles as basic
types. Although the physical model for each ensemble differs, we
shall find that the utility of each is identical and universal insofar as
macroscopic properties are concerned. The choice of a particular
ensemble is therefore made on the basis that it will yield the most
convenient results, mathematically.

The macroscopic constraints that specify the three kinds of
ensemble are shown schematically in Fig. 8.1. The three ensembles
are

microcanonical ensemble: Each system is isolated from the
others by rigid, adiabatic, im-
permeable walls; U, V, and N for
each system are constants.

canonical ensemble: Each system is closed to the others
by rigid, diathermal, impermeable
walls; T, V, and N for each system
are constants, but energy can be
exchanged — it is as though the
systems were immersed in an iso-
thermal bath.

grand canonical ensemble: Each system is separated by rigid,
permeable, diathermal walls. T, V,
and p for each system are con-
stants, but both energy and mass
can be exchanged; this is like a
canonical ensemble made up of
leaky boxes.

Let us now explore the properties and the consequences of each of
these ensembles in greater detail.
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Fig. 8.1 Schematic representation of three kinds of ensembles.
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(a) A microcanonical ensemble. Systems | through « are
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I |
|
L2 -
| | =1, = = Te
T T T T T T T o ..
| | V =V, = =V,
I R = -
K = Hy = = K
IS IS E ¢
| | Uyl and N, = con-tants
[
| |
| l

(¢} A grand canonical ensemble. Energy and mass can be exchanged
among systems.
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MICROCANONICAL
8.2 ENSEMBLE

ANALYTICAL DESCRIPTION

OF THE ENSEMBLE

We wish now to build a statistical description of the micro-
canonical ensemble that we have just described in physical terms.
The starting point for the statistical description of a system of
particles has been the thermodynamic probability, W, in the past.
This was defined in such a way that
w

)

W(macrostate) = (3.4a)

where
( = total number of possible microstates

As we look at the microcanonical ensemble that we have con-
structed, our attention moves naturally to this quantity © which we
have heretofore had no need to identify with a special symbol.
When we wrote the total number of microstates consistent with the
macrostate of a single system of independent particles (of boltzons,
in this case), this result was

W ]:I1 5;\“ (6.82)

But the number of microstates consistent with the macrostate of
the ensemble is !, which would be written as

: g‘.\.l
e=> I @.1)
IN} i=0 L
where the Y indicates a sum over all possible sets of the N.’s con-

[NV}

sistent with the usual constraints on the number of particles and
the energy of the system,

> N =N (3.1
and
> aNi=U (3.2)
i=0

The last constraint is actually imprecise because the Heisen-
berg uncertainty principle allows some variability in the energy.
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There is a distribution function f of system energies in the en-
semble, in the variable U. Itis formed in such a way that

= U462
Q= f f(U) dU ~ f f(U) duU (8.2)
—c0 U—sUi2

where §U is the variability required by the uncertainty relation. The
spread of energy in an ensemble composed of large systems is
very, very narrow, as implied in Fig. 8.2. It actually approaches the
Dirac delta function as the size of the system becomes large,

U=Up
U= Uy

where U is used here to designate the value specified by Eq. (3.2)

and[' 5dU = 1, by definition of 5.

o

(U) — Q3(U — Up)] = [{;” (8.3)

BASIC THERMODYNAMIC

RELATION

We call the sum Q the microcanonical partition function and seek
to form a basic relation between it and macroscopic system vari-
ables. The explicit evaluation of Q is formidable, but we can see
immediately that

Q=U, V,N) (8.4)
Fig. 8.2 Distribution of energies of systems in a microcanonical ensemble.

S A

Curve approaches almost

| to a Dirac “'spike,” even
/ for fairly small N
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The independent variables U and N necessarily enter through the
constraints, and Vis introduced in the specification of the energy
levels. If we note that N can be viewed either as the number of
moles or the number of molecules (since the two differ only by the
conversion factor N,), then we see that Eq. (8.4) has the same in-
dependent variables as the entropy form of the macroscopic funda-
mental equation,

S = S(U, V, N) (1.4a)

The entropy must therefore be related through U, V, and Nto €.
By constructing arguments similar to those set forth in Sec. 3.5, we
arrive at the following relation, similar in form to Eq. (3.17), for Sin
terms of ,

S(U, V, N) = kIn U, V, N) (8.9)

This is the basic relationship relating the macroscopic properties of
a system from a microcanonical ensemble with the statistical
properties of the ensemble.

The difficulties of evaluating @ can be largely overcome once
we can accept a startling mathematical result, that

In S! = |n (WI + W2 '*"' ') o In W:l::lx (8'6)

where W, .. is the largest Win the series. The fact that the largest W
can be used to characterize the whole of  is central to our method
and requires some justification. Instead of dwelling on a rigorous
mathematical deduction’ that would be beyond our scope here, we
shall use a fairly evocative physical argument presented by Rush-
brooke.®

Suppose that there were as many as N systems with W's com-
parable to W,. (i.e., as many such systems as there are particles
in any one system). This is a very large number but it pales against
the magnitude of W, which is perfectly enormous by any stretch of
the imagination. Then

In 2~ In NW,, .. + (much smaller terms)
or

INQ~InW..x +1InN

SThe ““‘method of steepest descents' developed by Darwin and Fowler is
described in detail by R. H. Fowler and E. A. Guggenheim, Statistical Thermo-
dynamics, Cambridge University Press, New York, 1939,

5G. S. Rushbrooke, Introduction to Statistical Mechanics, Oxford University
Press, New York, 1949, chap. 2, sec. 6.
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ButIn N is very small in comparison with In W,,... Thus, to a degree
of approximation that becomes increasingly accurate with increas-
ing N, we obtain

INQ =InW,. (8.6a)
Italso follows, then, that Eq. (8.5) reduces, in effect, to Eq. (3.17),
S=kinQ=klinW,.,
in which the constant, k, must again be Boltzmann's constant.

EXAMPLE 8.1 Show thatin the microcanonical ensemble formula-
tion, the Helmholtz function of a system can be expressed as

L9 (InQ alnQ
Sl GG

In the microcanonical formulation, the Helmholtz function takes
the following functional form:

F(U, V, N) = U— T(U, V, N)S(U, vV, N)

Since S = k In U, V, N)and 1,/ T = (84S dU)y x, there follows:
oE-9)- (035 -9)/)
~e55(3)/ %
o ;THL} ('”75-’);_“\'/(f’(‘L”)i_“\_

In Sec. 3.5, we argued in purely physical terms that maximizing
W would result in an equilibrium situation. Now, with the help of
ensemble arguments, we see that this conclusion is deducible in a
purely mathematical way. The elementary statistical mechanics
that we developed in chapter 3is, therefore, based upon the micro-
canonical ensemble. We have already shown the universal char-
acter of this method, although we restricted its application to
independent particles. This universality might seem odd in view of
the fact that the systems of the ensemble are isolated from one
another. This paradoxical situation is discussed further in Sec. 8.5.

The microcanonical ensemble is universal in its applications,
but there are other equally general approaches. The canonical and
grand canonical ensemble approaches are, in particular, based
upon broader models, and they result in simpler descriptions of
many practical situations. Let us consider the canonical ensemble
next.
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CANONIC

AL

8.3 ENSEMBLE

ANALYTICAL DESCRIPTION

OF THE ENSEMBLE

The canonical ensemble provides a more utilitarian funda-
mental equation for a variety of problems than the microcanonical
equation did. In this case, let us first recall one of the Massieu-
function forms of the fundamental equation,

F- F(]lr v, N) (1.48a)

In certain cases of practical interest, this provides some advantage
over Eq. (1.4a), which we used in Sec. 8.2. By replacing U (which
often is not measured or “‘given’’ information) with 1/ T, we obtain a
more usable fundamental equation. This kind of improvement was,
of course, the whole purpose of the Legendre transforms that we
discussed in chapter 1.

In the canonical ensemble, as we already have noted in the con-
text of Fig. 8.1(b), the constant-energy constraint is replaced with a
constant-temperature constraint. We therefore look for a funda-
mental microscopic parameter that will have the same property de-
pendence as Eq. (1.48a). This will require more development than
it did in Section 8.2, however.

There will now be a broader distribution of the number of in-
dividual systems N, at each energy level U,. This is illustrated
roughly in Fig. 8.3, which shows the distribution function f(U);) for U,
inan ensemble composed of N systems. As Nincreases, f(U,) tends
(as we shall show shortly) to become increasingly spiked. We now
will establish this distribution in much the same way as we estab-
lished the distribution of the energies of the individual particles in
chapters 3 and 6. It should be emphasized, however, that the sys-
tems in an ensemble are distinguishable owing to the macroscopic
nature of each system.

The thermodynamic probability, W, of a macrostate of the
canonical ensemble is

W= NI ‘ 1% "" @®.7)

=0 Nl
where the “‘degeneracy,” G,, is the number of ways in which any
one of the N, systems in the ensemble can occupy its particular
energy level U;. But this G; is exactly what we formerly called the
thermodynamic probability W; of a system with energy U,. Thus, if
we once more restrict ourselves to a consideration of independent
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Fig. 8.3 Energy distribution of the N systems comprising a canonical en-
semble. (The sketch is scaled so thatit can only apply to relatively small N's.)

W) A

Y

and indistinguishable boltzons? for illustrative purposes, we can
write, in accordance with Egs. (6.1) and (6.4),

= r.Ni.i
6 =w =113 (8.8)

where N,; is the number of particles with the particle energye; in a
system with the system energy U;. The N;;'s obey the constraints

> Nij=N;=N (8.9)
i=0
where N is the number of particles in each of the N systems, and
> Nuyei = U; (8.10)
i=0

Thus we are erecting a kind of second-order thermodynamic
probability Wand we need to write another set of constraints on the

"Note that this assumption, and Eq. (8.8), is restrictive. Equation (8.7), on the
other hand, istrue for any canonical ensemble because the systems of which
it is composed are always independent of one another.
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whole ensemble. The total number of systems and the total energy
of all systems are fixed, so these constraints are

I

> Ni=N (8.11)
i=0
and

> Nu; =0 (8.12)
f=0

The problem of maximizing W, as given by Eq. (8.7) and subject

to the constraining Eqgs. (8.11) and (8.12), differs in no way from the

problem of obtaining W; that we solved in Sec. 6.1. The answer

[recall Eq. (6.5a)] is

I

G, exp (—B8U)
ZG exp (—8U))

where the identification of 3 with 1/kT has yet to be made. The
argument that this distribution of systems corresponds with the
equilibrium ensemble is no different from the justification of
Eq. (8.6).

The denominator of Eq. (8.13) very closely resembles the parti-
tion function. We call it the canonical partition function Q

0= Z{}Gjexp(* 8U)) (8.14)

N,
ﬁ (8.13)

or, for the special case of systems that are composed of inde-
pendent and indistinguishable boltzons,

Q= Z II = exp (_5 > Nu‘ﬂ) (8.15)

j=ui= i=0
The canonical partition function is the fundamental parameter for
the canonical ensemble. After we first see how to evaluate 3, we
then show how the remaining thermodynamic information can be
obtained from it.

IDENTIFICATION OF 3
The average of the system energies U, = U/N. Thus

U= > 5, U (8.12a)
or -

2, UGiexp(=BU)

U = 5 (8.16)
or

T, - ~dInQ @.17)

ap v
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The similarity of Eq. (8.17) to (6.26) implies a relationship be-
tween Q and the g potential discussed in chapter 6. The resem-
blance between these two fundamental parameters is more than
skin deep and will merit discussion later.

Next consider a differential changein In Q, where Q = Q(3, V, N)
but N = constant:

dlnQ
B vy av

But the coefficient of d3 is — U, in accordance with Eq. (8.17), and

dinQ
av

dinQ =

av (8.18)
8N

10 [
3.;\'0”/ QaVv lz G, exp (—BU; )H av
or, since U; depends upon V, in general

alnQ
av

V=-82 dU,—exp(—8U) = -8, = dU,
i=u Q SO0 N

8.N

Therefore, in accordance with the definition of an average,

dlIn Q I
EYY dV = —p5(dU)
and Eq. (8.18) becomes
dinQ = —[U dB + B(dU)) (8.19)
or
U= éd(m Q + BU) + (dU) (8.19a)

The physical meaning of (dU) can be clarified in the following
way. First we write Eq. (8 12a) in the form

du_dZ *’u —Zua(”) Z%duj

!

or
N;
du = Z U,d (Tv) + dU (8.20)

Thus two kinds of effects give rise to variations in U. Either the pro-
portions of systems with different U,'s vary, or the system energies
vary without changing the set of numbers, NJ. We considered this
situation for the Ni's and ¢’'s within a system when we discussed
Eqg. (6.14)in Sec.6.1. The same kind of inferences can be drawn from
Eqg. (8.20) as were drawn then.

Changes in U without associated changes in the distribution
numbers will leave W unchanged. The entropy of the ensemble
will also be unchanged, and dU will necessarily correspond with
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isentropic changes of state. We know, of course, that the U,'s de-
pend upon volume, so dU is then the isentropic work —p dV. In the
light of the well-established thermodynamic relation

dU =TdS — pdV

we can then make the identification

TdS =2 Ud (ﬁj) = ,—ld(ln Q +8U) (8.21)
7 N 8
Equation (8.21) now makes possible the identification of Tand S,
T~ 3! (8.22)
and
S~InQ+ gU (8.23)

The constant of proportionality in Eq. (8.22) will represent no more
than a scaling of temperature. We choose the constant as the in-
verse Boltzmann constant because in later computations this
results in a proper statement of the ideal-gas law. Thus

1

6] T (2.34)

as before.

BASIC THERMODYNAMIC
RELATION

Since k is the constant of proportionality in Eq. (8.23), it can be
written as

S=kInQ + gr (8.24)

and because F = U — TS, we can write at once

F
7 kinQ (8.25)

This result strongly resembles Eq. (8.5), the fundamental equation
for the microcanonical ensemble. The canonical partition function
Q, depends upon 3 or 1 T, upon V through the U,'s, and upon N.
Thus Eq. (8.25) is in the form of the fundamental equation that
results from subjecting S = S(U, V, N) to a Legendre transform
that replaces U. That is,

Fl1 1
"‘T(;’r' V,N) kln o(?, v, N) (8.25a)

The independent variables can be transformed (as was required in
Problem 1.3) to give a fundamental equation of the form

F(T, V, N) = —kT In Q(T, V, N) (8.25b)
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EQUIVALENCE OF THE
MICROCANONICAL AND
CANONICAL ENSEMBLE

METHODS

The two methods are identical if system energies and other
properties do not fluctuate appreciably from the ensemble average
values. This is indeed the case, but we shall defer consideration of
this and other aspects of fluctuation theory to Sec. 8.5. At this point
we only want to show that the fundamental equation for the canoni-
cal ensemble [Eq. (8.25)] is the same as that for the microcanonical
ensemble for a system of independent and indistinguishable
boltzons:

F(T, V, N) = —NKT In [(e/N) Z(T, V, N)| (7.8)

If we introduce the definition
Nij Z N. €;
9 =G; exp( ) 11 I exp | _T " (8.26)
Nij! KT

into Eq. (8.15) we obtain

Q=2gq (8.27)
]
But a comparison of Eqgs. (8.26) and (8.13) reveals that
q; = N.!Q N

and we have already noted that the distribution function of, say, U;is
extremely steep for large N (recall Fig. 8.3). Thus N,/ N is large only
for U, very close to U and small elsewhere. This makes it possible
to introduce the approximation

I Q ~ In (q))ne (8.28)

which is not unlike our earlier approximation, In Q ~ In W,...

To obtain a particular set of N;;'s that would maximize g;, we
again employ the method of Lagrangian multipliers. The function
to be maximized is given in the right-hand side of Eq. (8.26) and the
single constraint is

Z Nij = N; =N (8.9)
The resulting g = (g,)..x is such that
INQ =1Ing=N,In J:(e N)Z g. exp ( 'kr)] (8.29)

but the summation is merely Z. Therefore,
InQ = Nlin (Ze'N) =In (Ze, N)¥ (8.30)
or
Q = (Ze/N)y¥ (8.31)
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and the fundamental equation, Eqg. (8.25b), becomes
F=—kTInQ = —NkT In (Ze/N) (7.8a)

We see then that in the special case of independent particles
the same fundamental equation results from either the micro-
canonical ensemble or the canonical ensemble. The advantage we
have secured through the use of the canonical ensemble is the
formulation of a fundamental equation that will prove to be much
more adaptable to systems of dependent particles (in which Z can-
not be used). The canonical ensemble is, perhaps, more elaborate
in its logical understructure but it is more general and it is con-
venient to use. Chapters 9 and 10 provide illustrations of the way in
which dependent particles can be treated by using canonical en-
semble methods.

GRAND CANONICAL
8.4 ENSEMBLE

The grand canonical ensemble has the broadest logical struc-
ture of the three that we discuss in this chapter. Not only does it
abandon the constraint of constant energy, but it releases the con-
straint of a constant number of particles as well. This change also
leads to certain mathematical simplifications in the evaluation of
thermodynamic properties. However, the concepts and formula-
tions involved in developing the fundamental equation are still
more elaborate in this ensemble than in the preceding two en-
sembles. Consequently, the grand-canonical-ensemble formula-
tion of statistical mechanics has seen less practical use than it
rightly deserves.

STATISTICAL DESCRIPTION
OF THE GRAND CANONICAL
ENSEMBLE

As we have already seen within the context of Fig. 8.1(c), the
grand canonical ensemble has a constant total energy U and num-
ber of particles N,, within it. The individual systems are possessed
of variable energies, U., and particles N,, although their tempera-
tures and chemical potentials are equal to one another.

Figure 8.4 shows how the system energies and the number of
particles within the systems might be distributed within a grand
canonical ensemble. As was the case in Fig. 8.3, we should antici-
pate that the distribution would normally be quite steep. The ther-
modynamic probability of the ensemble W is more complicated in
this case,

(8.32)

w= I 11 %

N ik
JK -
N !
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Fig. 8.4 Distribution of system energies, and particle populations of sys.
tems, in a grand canonical ensemble.

I W N A

where Nﬁ,k is the number of systems having both an energy U, and a
number of particles N,. There are three constraints on W. The
first is

D> > NuN; =N, total number of particles in the ensemble
i k
(8.33)

and, because

Z .""\:"jk = N number of systems with energy U,
i
the second can be written as

2 > NuU. =0 energy of the ensemble (8.34)
r

Again, the total number of systems is fixed and the third constraint
is thus

S Ry =N (8.35)
§ok
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The degeneracies G are again the thermodynamic probabilities of
the individual systems. For a system of independent and indis-
tinguishable boltzons, they would be

N

Gu = []Z= (8.36)
i ik

where the subscript jk on N;, serves to identify that set of N;’s as

belonging to the particular subgroup of systems with N; particles

and energy Uy. It differs in this respect from a summation index.
Accordingly, the constraints on the individual systems are

> N, =N; (8.37)
and

2 Niyei = Ui (8.38)

The method of Lagrangian multipliers yields, in this case,

& _ G,u‘ exp (ﬁ QNJ o BU&)
N ZkZG-H‘ exp (—aNJ— BUL)
!

(8.39)

The multiplier g can be identified as 1/kT by comparing Eq. (8.39)
with the canonical distribution, Eq. (8.13). If all the N,'s are identical
—if no ‘“'leakage’ occurs within the grand canonical ensemble —
the two results are the same. The identification of « is made later.
We can write

atthe present, in anticipation of the fact that we will prove x equal to
the chemical potential. The motivation for supposing that « takes
this form.is Eq. (6.21).

The grand canonical distribution or distribution of Ux'sand N;'s
can then be rewritten as

Ni Gy exp [(uN; — U/KT] (8.40)

N 2222 Gy exp [, — UR)/KT)

This result can be readily redeveloped (Problem 8.3) for the case in
which two species a and b of particles occupy the systems. The re-
sulting distribution accrues a third subscript/, since N,;, Ny, and Ux
are all randomly distributed. Thus

N Giit €XP [(uaNas + pusNoy — Us)/KT]

R (8.41)
N 20202 G exp [(ualNe, + wNoy — U)/KT)
o
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Other applications of this kind can readily be generated. We should
also note that Eq. (8.40) is not restricted to the treatment of
boltzons. It should become clear in a moment that our treatment of
Fermi-Dirac and Bose-Einstein gases in Sec. 6.2 was but a special
case of the use of the grand canonical ensemble.?

The denominator in Eq. (8.40) is analogous to the partition
function and the canonical partition function in its role in the grand
canonical ensemble. It is given the symbol Qg and called the grand
canonical partition function,

Q¢ = E ; Gj« exp (%) (8.42)

and for systems of independent and indistinguishable particles it
takes the form

Nijk Ni.(p— &
Q=22 11 &— oxp [Z__(_F_E)} (8.42a)

kT

BASIC THERMODYNAMIC

RELATION

It would be possible to put Qg in its proper form as a funda-
mental parameter for the grand canonical ensemble without re-
course to other ensemble formulations. For convenience we instead
employ an approach that makes reference to the preceding de-
velopments, and in so doing we can clarify the interrelation between
the canonical and grand canonical ensembles.

We can rewrite Eq. (8.42) as

o = Zow ([T o ere ()]

The quantity in brackets is, in accordance with Eq. (8.14), the
canonical partition function Q; for systems composed of N, par-
ticles. Thus

Q = ; Qs exp (%)) (8.43)

It can again be proved that this summation can be replaced with
its largest element, Q exp (uN/kT),

Qs = Qexp (%"-Vf) (8.44)

SL. D. Landau and E. M. Lifshitz, for example, use the grand canonical en-
semble directly to develop quantum statistics. See Statistical Physics (English
translation from Russian), Addison-Wesley Publishing Company, Inc., Read-
ing, Mass., 1958, p. 152.



8.4 Grand Canonical Ensemble 231

The problem of determining the value of N for which the
summand of Eq. (8.43) is truly maximum must still be solved. This
can be done very easily: we differentiate the logarithms of Q exp
(uN kT) with respect to N, and require that this differential must
vanish. This resulting condition is

[
=)
Q
=~

AN kT
But we know that N should be the average number of particlesin the
systems, so from Eq. (8.25) we have
dlnQ 1 oF

ON ~  kTaN
We showed by perfectly general arguments at the end of Sec. 6.1
that
dF .
= = ial
N chemical potentia

It follows that the u that we should be using in Eq. (8.44), and in the
development preceding it, should indeed be the chemical potential.
Finally, then, Eq. (8.44) can be recast in the form

uN F G pV

In Qs = In Q,ux -1'-‘,‘('? = _ﬁ'+ﬁ= kT

or
pV A
In Qs = KT compressibility factor (8.45)
At this point we should recall that Eq. (6.28) is of exactly this
form,
_Pv
q="17 (6.28)

The g potential and the logarithm of the grand canonical partition
function are therefore exactly the same thing.? Like the g potential,
In Q¢ may be viewed as the fundamental parameter. The Legendre
transform of S(U, V, N)into terms of (1/T, V, u/T) is, as we found in
Example 1.3,
pvV(l
= — — —
S(U, Vv, N) 5 (T, v, T)
so that pV/T is the fundamental macroscopic parameter corre-
sponding with the microscopic parameter, In Qq. For convenience of
computation we can recast this (Problem 8.4) as

pW(T, V, 1) = kT In Qu(T, V, 1) (8.46)

9And they, inturn, can be thought of as the compressibility factor per particle
in a mole of gas.
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Then in precise analogy with Eqgs. (6.25), (6.26), and (6.27) we
obtain

N =YY dInQ (8.47)
du |rv du ry
U=uN—pV+ TS = k2310 Q% (8.48)
T v
and
dln QG
=2 el 8.49
P="ov b, =TV |1, (8.49)
The entropy is obtainable directly from Eq. (8.46),
d
= —-é-f-—_y.u = ﬁ(len Qv (8.50)

EXAMPLE 8.2 Verify the following unfamiliar Maxwell relation
using the grand canonical partition function,

o _ N
oulry Vi,
From Egs. (8.49) and (8.47) we have
- dln Qc dln Qc;
p= kT—av . and = kT ———— 95 iy
Therefore,
ap 92 In Qg dIN 92 In Qg
= = kT d o =T
ayl;-,u Tewav 1 5y, av ou

and since the order of partial differentiation does not alter the re-
sult, the Maxwell relation is proved.

EXAMPLE 8.3 Obtain the expression for the grand partition func-
tion for a single-phase, multicomponent system composed of in-
dependent and indistinguishable particles. Use this expression to

evaluate pV.
The desired partition function is written for two components in

the denominator of the right-hand side of Eq. (8.41). For o com-
ponents it would be

QG = ZHZZGJ ok exp (#lNl) ++ #aNn’i - UK)
J Tk kT

where, for independent and indistinguishable particles,

w1 (T%5)

m=1
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Thus
)
i)
~3 o
and

pV = kTIn Qg = kT Ei In Qg™

Hi=

It might at first seem that the methods of the grand canonical
ensemble have given us nothing new over the results of Sec. 6.2.
The important thing to remember here is that all our considerations
at that point bore the restriction that particles were independent.
While we have used Gj, for independent particles to illustrate how to
evaluate Qs, we have in no way restricted the preceding results for
independent particles. We are now, therefore, in a position to de-
scribe a much broader class of equilibrium configurations than we
were before.

It should be clear that the results in this section represent the
macroscopic properties of equilibrium system *‘precisely,” in the
same sense that experiments measure properties precisely over
times that greatly exceed the period of microscopic fluctuations.
On the microscopic level our results are correct for the average be -
havior of the systems comprising the ensemble. Therefore, our
attention turns naturally to the problem of understanding the
nature of fluctuations of thermodynamic properties.

FLUCTUATIONS OF
THERMODYNAMIC
8.5 PROPERTIES

The properties of the systems within an ensemble vary about
the mean or equilibrium values in the same way as a single system
varies with the passage of time. We have so far emphasized that
these fluctuations are generally quite small. We now wish to ask
what the circumstances would be for fluctuations to become signifi-
cant because there are indeed situations in which they can no
longer be ignored. The Brownian movement of colloidal particles
and other small-systems anomalies are examples; so, too, are the
density fluctuations of gases near the critical point. The gross
averaging character of statistical mechanics cannot predict exact
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fluctuations in a system, but it can predict the relative probabilities
of the occurrence of fluctuations in the ensemble.

Another important reason for studying fluctuations is that the
equivalence of the microcanonical, canonical, and grand canonical
ensembles to one another depends upon fluctuations being very
small. If, for example, energy fluctuations in the systems of a
canonical ensemble are small, the ensemble is equivalent to a
microcanonical ensemble. If the number of particles as well as the
energy of the systems in a grand canonical ensemble fluctuate
negligibly, all three ensembles are equivalent.

FLUCTUATIONS OF ENERGY
OF A CANONICAL ENSEMBLE

We wish to consider the fluctuations in energy from system to
system in a set of systems of equal particle number and tempera-
ture — in a canonical ensemble, in other words, The distribution of
systems in energy U, is given by Eq. (8.13). From this result we can
compute the mean-square deviation ¢,2 which is defined by

o2 =(U;— Uy = -0 (8.51)

Actually a more helpful measure of the magnitude of fluctua-
tions is the *‘relative dispersion' ¢, U or comparison of the root-
mean-square energy fluctuation with the mean energy. To compute
it we must first obtain the mean energy,

2_ UG, exp (—U,/kT)
/

ST 20 Grexp (— U kT)

u (8.52)

73

2=

Equation (8.52) can be rewritten as
U, U,
UZG exp( kT) Z U,G; exp(-ﬁ)
and differentiated with respect to T. The result is
au y, Y,
Z G, exp( kT) : kT‘z UG, exp( kT)

5% V.N |
N U;
kT’ E U;2Gjexp ( kT)

or, if we recognize in this expression the constant-volume specific
heat, (dU, dT) ~, the average energy, and the average energy
squared,

kT2, + U2 = 12 (8.53)
or

o _ Tyke, (8.53a)
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For ordinary thermodynamic systems the relative dispersion is
very small, owing to the presence of the Boltzmann constantin Eq.
(8.53a). To be more specific, let us consider substances for which
the equipartition principle holds. In this case U = DR'T 2 where
D is the number of degrees of freedom, so

au E 1

Ty — (8.54)

u ND\N
For ideal monatomic gases, D = 3; for an Einstein solid that also
obeys the equipartition principle, D = 6; and generally \?" D is on
the order of unity. Thus we find that in general

apr
= o2 TR 8.54
U (8.54a)

The inverse-root-N result is well known for the relative disper-
sion of samples of size N from the mean value, and should be
familiar to the student with a background in elementary statistics.
It tells us that all but the tiniest molecular samples will yield negli-
gible deviations from the mean. A 1-in.3 box filled with an ideal gas
at room temperature will contain on the order of 102° molecules and
exhibit energy fluctuations of only about 0.00000001 percent of the
total energy.

The pressure fluctuations of a monatomic ideal gas are also of
interest, We find that Eq. (2.31),

P 2nmC_2U
P =3 372 T3y et
can be used to replace U in Eq. (8.54),
_ e 51 1
L _;’(‘{L: Up_ o 2 = (8.55)

so that the inverse-root-N relation also characterizes the relative
dispersion of pressure.

FLUCTUATIONS OF DENSITY
IN A GRAND CANONICAL
ENSEMBLE

We shall now shift our attention to the fluctuations of density
that might occur as time passes in a system of constant T, V, and u
—or from system to system in a grand canonical ensemble at a
given instant. Using the grand canonical distribution function Eq.
(8.40) in the definition of an average, we obtain for N,

N=22 ;\;:? N, -é: 2 NG exp (*—‘-N-'k; U*) (8.56)
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Cross-multiplying by Qs and differentiating with respect to u we
obtain, as we did in Eq. (8.53),

AN N> N2
7'” - TXT T kT (8.57)
The relative dispersion of number density o5,/ N is then
. (N2 — N3z N 12
o (WO Ny L [kT(a—N) ] (8.57a)
N N N A fry

The derivative (aﬁ,.'ag}r,r can be reduced to more convenient form
as follows.

We first employ the familiar chain-rule form to write

_ 4N
rv AV
We can consider p, instead of g, to be held constant in the first
derivative on the right-hand side because constant T and p implies
constant u. Then, after expanding the last derivative, we obtain

_ 9N av
rv OV, dp

Vv
T.u a.u

i
du

T.N

o
d M

Ip

TN O

(8.58)

TN

Next, it is possible to construct a Maxwell relation by cross-differ-
entiating the coefficients of dp and dN in the thermodynamic re-
lation

dG = —SdT + Vdp + udN

The result,

ou av
3,0 T.N aKl' T.p

can be substituted into Eqg. (8.58) to obtain

. _[@E o
TV B (’)Vrlp ap

The derivative in brackets reduces to

aN

P (8.59)

TN

because N is directly proportional to V at constant T and p. Thus,

Eq. (8.59) reduces to
an| - _ _(5)2QZ
v \V/ ap

o (8.60)

TN
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which simplifies Eq. (8.57a) to the convenient form

an B _l ﬂ/ 1/2
N V[RT(OP)?'.EJ (8.61)

Itis no surprise at this point to discover that substitution of the
ideal-gas law, V = NkT p, in Eq. (8.61) results in an inverse-root-N
law again:

g
=

2|5

(8.62)

= l,_.
2l

Thus density fluctuations in a system of constant T, V, and p will
normally be very small. Only when the number density of a system
becomes very small will fluctuations have to be reckoned with. This
result also justifies the use of the grand canonical ensemble to
describe even systems possessed of a constant number of
particles.

An interesting example of the role of density fluctuations in
everyday experience is manifest in the appearance of blue sky. If
there were no density fluctuations in the air, sunlight would not be
scattered and the sky would be black exceptin the direct path to the
sun. In actuality, very small adjacent regions of greatly different
densities act as scattering centers, deflecting light from its straight
path. To have appreciable scattering requires that a significant
density fluctuation must occur over a region with dimensions of the
order of the wavelength of the sunlight. Since red light has longer
wavelength than blue, and significant fluctuations in density are
more likely to occur in smaller regions, blue light is scattered more
than red. On the same basis the glancing rays that penetrate
through a very deep layer of air at sunrise and sunset tend to be
red — the blues tend to be scattered out before they can be seen.
This is why dawn and dusk are characteristically rich in red hues.

In addition to density fluctuations we can also calculate the
energy fluctuations for a grand canonical ensemble. The result,
however, will be a sum of two terms: One is the fluctuation in the
energy of the canonical ensemble with a fixed number of particles;
the other is the fluctuation in energy associated with the fluctua-
tion of the number of particles.'® The relative dispersion in energy
computed for this case is of the same order of magnitude as given
by Eq. (8.54) for the canonical ensemble.

10For a more complete discussion see N. Davidson, Statistical Mechanics,
McGraw-Hill, Inc., New York, 1962, p. 270.
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SUMMARY OF

ENSEMBLES IN

STATISTICAL

8.6 MECIHANICS
Our discussion has embraced only three ensemble methods,

but it should be clear that others can be developed as the need
dictates. Table 8.1 illustrates how additional ensembles can be pro-
posed and their properties developed. The table paraphrases one
presented by Knuth!' in his excellent elementary discussion of
ensemble methods.

TABLE 8.1 List of Ensembles That Can Be Formed

Character of Independent Generating w
systems in parameters function Volume of
the ensemble of systems for properties systems
1 Isolated u, v, N S/k=InW Fixed
(microcanonical)
a Closed (canonical) 8, vV, N — F/kT=1InQ Fixed
3 Insulated to
energy, but U v, wT H kT Fixed
allowing mass
transfer
4s Open B, V,uT pV/kT =g =1In Q; Fixed
(grand canonical)
|
5 Isolated U, - N — pV/kT + S/K Variable
6ot Closed B, = N — G/kT Variable
b Insulated to
energy but Uyl U/KT Variable
allowing mass
transfer
§a'b Open Bym o/ T 0 Variable

“The parameter 1, T is characterized as the Lagrangian multiplier, 3.
"The parameter r is another Lagrangian multiplier, which enters by virtue of the variability of the

volume.

"E. L. Knuth, Introduction to Statistical Thermodynamics, McGraw-Hill, Inc.,
New York, 1966, chap. 3.
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Problems 8.1 Provide a descriptive illustration of some ensemble which
might be observed in the world around you and which you think
would be approximately ergodic. Is your example comparable with
one of the three types described in Section 8.1?7

8.2 Verify Eq. (8.30). Does the Lagrangian multiplier 3 appear in
this result? Explain.

8.3 Develop Eq. (8.41) fully.

8.4 Use the Legendre transform of U to show that Eq. (8.46) is a
proper fundamental equation. Then verify Eqs. (8.47), (8.48), (8.49),
and (8.50).

8.5 Suppose the systems in an ensemble are impermeable but
that they interact with constant-pressure and constant-tempera-
ture reservoirs. What are the governing macroscopic parameters?
The characteristic microscopic expression? The relationship among
them?

8.6 Obtain the derivatives U aV/; v and dp. d3ly v and show that

au
v

ap

4N ! (T.é =P

NV

This result is interesting because comparison with the thermo-
dynamic equation
o]

implies that 3 = constant T, as of course it must be.
8.7 Use the method of Lagrangian multipliers to maximize
-—-Z p: In p; subject to the constraint Z p: = 1. Show that when this

au| [ 1 ap

aVlry TaLT)

quantity is maximum, p; = constant.
8.8 For a microcanonical ensemble of single-component sys-
tems, show that

dln Q dlnQ dlInQ
u LD N - nQ
( du ):’,_\- V(_ daVv ): N ( dN )L',r "

8.9 Show how to evaluate the canonical partition function as a
function of temperature, given ¢.(T) data.

8.10 At what approximate altitude do 1-in.} samples of at-
mospheric air exhibit fluctuations in pressure that would appear in
functional measurements?

8.11 In the study of nucleate boiling one is interested in the
active nucleation sites or locations on a heating element from which
bubbles are triggered. A common measure is the active site den-
sity, n sites ft2. Suppose you are studying boiling on a representa-
tive surface of area 10in.2. How high must n rise before the variation
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in observed n among different surfaces of the same type drops
below +3 percent?

8.12 If we wished to do so, we could take AU = (U; — U)* as a
measure of energy fluctuations in the canonical ensemble.
Show that

_#InQ

—
AL a3

8.13 Show that ¢, = N(¢2 — &) kT2 and decide whether or not it
can ever be negative.
8.14 Given the result of Problem 8.13 show that

v

u

This result emphasizes that the distribution of particle energies is
much broader than the distribution of system energies.

8.15 For a grand canonical ensemble of single-component
ideal-gas systems of N average number of particles, show that the
probability of finding a system with N; particles is given by the
Poisson distribution,

ﬂ\-ls

— N2

1 .
,,:{NI_) - N_r!e "NV
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The ensemble formulation of statistical mechanics gives, as we in-
dicated in chapter 8, a general basis upon which it is possible to
predict the equilibrium behavior of nondilute gases. It is necessary
to introduce an intermolecular potential-energy function into the
description of molecular behavior, and the resulting computations
can understandably become quite complicated. The description of
such interacting or “*dependent’’ particles requires an increasingly
accurate model for the intermolecular potential function as the
density increases. As the gas becomes more dilute, long-range
forces are slight and can be characterized fairly crudely to give a
correction to basically ideal-gas behavior. For more dense gases
and for liquids, these computations must be done far less casually
and computations are increasingly difficult.

Most of this chapter deals primarily with ‘“moderately dense”
gases, for which the theory is well developed and reasonably
simple. Many useful applications exist in this range of behavior
and the treatment also serves as a starting point for the more com-
plexand general theories. In Sec. 9.4 we consider some applications
of the law of corresponding states, which can be used to describe
very nonideal behavior.
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thermostatic properties of dense fluids

STATISTICAL-
MECHANICAL
DESCRIPTION OF
MODERATELY
DENSE GASES

CANONICAL PARTITION

FUNCTION AND

FUNDAMENTAL EQUATION

As we indicated in chapter 8, we have considerable latitude in
choosing any particuiar ensemble approach. For practical purposes
the canonical ensemble suits our present needs well. We have no
need to consider chemical interactions (variable N) at the moment,
and the canonical ensemble provides a statistical-mechanical
description that allows particle interactions. The fundamental
parameter with which we must deal is the canonical partition
function Q,

Q=X e (—U)) (3.14)

The energy of the system U, is expressed in hybrid form. We are
well aware that the quantization of the translation of ordinary par-
ticles is unimportant in all cases of practical importance, while
quantization of the internal modes frequently must be considered.
Finally, U; contains a potential energy ¢(ry, . . ., ry) of the N particles
relative to one another. We defer discussion of ¢ until later. The
resulting U, is

[

N N

U= 2 (o + 205 4 gtrr, .. ew) ©.1)
i=1 i=12m

where the p,'s are momenta of the individual particles and the r,'s

are their positions. Because we wish to take a quantum view of only

the internal modes in this hybrid expression, we factor their con-

tribution out of Q and write!

couf i [ e
0~ ougpss [+ o (- 2 2

X exp (— k—'i;.) dpi---dpy dr;- - vdr,\-] 9.2)

'We use a notational device here that we have previously avoided: we let dr
denote a volume element dV — the change of position in three-dimensional
space.
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in concordance with the phase integral, Eq. (5.37),2 and the relation
between Q and Z, Eq. (8.31) (see Problem 9.1). The internal partition
function for the system Qi is simply

Qint = Zint¥ (93)

because the internal energy state of each particle can be assumed
independent of every other particle.

The integration over momenta is easily done, and it leads to a
recognizable result,

o
c _y ez T N2
[_m fexp ( 2 2ka) dpi---dpy = (2amkT) 9.9

The canonical partition function is, therefore,
o1 .
Q = (Zin)" NI ATINZ, (9.5

where A, the thermal de Broglie wavelength (see Example 5.4) is

( h? 12
A= é;mr)

and Z,, often called the configuration integral, is defined as

ZAT, V) = / . fexp [_?i(_':“_k?;ﬂ)] dr,---dry (9.6)

When the configuration integral is evaluated, the fundamental
equation can be written and used to evaluate all thermodynamic
information:

F(T, V, N) = —kT In Q(T, V, N) (8.25b)
In this case it takes the form
F=—NkTInZy — (InN—1)—3InA]— kTInZ, 9.7)

EVALUATION OF THE
CONFIGURATION INTEGRAL

It should be clear from Eq. (9.7) that the most important ele-
ment in the statistical mechanical description of non-ideal gasesis
the evaluation of the configuration integral. But this is not a simple
matter. To achieve a simple workable formulation, a number of
simplications and assumptions must be made. We consider here a
gas for which the following restrictions are applicable:

-Although Eq. (5.37) was developed for independent particles, Eqg.(9.2) is
developed without need for this assumption.
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1. The potential energy of interaction between any pair of mole-
cules can be regarded as a function only of the distance between
them. Their relative orientation can be ignored. This is valid for
spherically symmetrical potentials, which are commonly exhibited
by nonpolar, uncharged molecules with reasonably spherically
symmetrical forms. A more general treatment must be employed
for molecules with permanent dipole moments, grossly unspherical
forms, or electrical charges.

2. The potential energy of the gas is the sum of the potential
energies of all the pairs. This restriction is reasonable when gases
are not too dense. It says in essence that the gas is sufficiently
“thin"" that only two particles interact at a time and additional
energies of interaction can be ignored. Thus

(i, - 1) = 1 3 6(r) (9.8)

where r,;; = |r, — r,/ and the factor of | is included to compensate for
counting each interaction twice — once as jj and once as ji. Another
way of expressing this summation is

o, ... = D, Gulr) (9.9)
Si<js N
For ideal gases there is no potential energy of interaction:
¢ = ¢;; = 0 and the exponential terms, exp (— ¢, kT), are equal to

unity. Thus, for weakly interacting particles, it is reasonable to
introduce a function, f.(r.),

fi(r:) = exp (_T?}) -1 (9.10)

Since the magnitude of f,; is generally much less than unity, we can
then rewrite Eq. (9.9) as

@\ _ _ %\ _ s
exp (_kT) e l!- N exp( kT) B |_-;_:'I<£-;:.-\' (1 + fi)

ar

@
— ~ ] -4 (‘. 1
(=) ~11 T 0 o
The approximation in Eq. (9.11) results from dropping the second-
and higher-order product terms, Z fi;fi-j, and so forth. A detailed
treatment of such terms is the subject of the theory of cluster
integrals.’ It is rather complicated and we shall not take it up here.

iT. L. Hill, Statistical Mechanics, McGraw-Hill, Inc., New York, 1956, pp. 122-129,
136-144.
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The product terms actually represent the interactions of more
than two particles at once. Although we do not wish to treat these
terms in any complete way, it will pay us to investigate their mean-
ing in a little more detail. Figure 9.1 illustrates in a schematic way
how a ““‘moderately dense’” and a ‘‘dense’’ gas might look. In Fig.
9.1(a), particle number 1 of a moderately dense gas interacts with
all others. However, the effective range of interaction — or the
distance beyond which ¢ becomes vanishingly small — is much less
than its distance from any neighboring particles. Accordingly the
sum over f;, gives no contribution. The sum over all f;; picks up two
important contributions from the 4-5 and 6-7 pairs, and in this case
these two pairs represent the entire meaningful contribution to ¢.

Figure 9.1(b) shows a gas that is dense enough so that, in addi-
tion to interacting pairs, there are some clusters of three and four
interacting particles. The single or noninteracting particles in Fig.
9.1(b) as well as in 9.1(a) contribute in toto only the lead term of unity
in Eq. (9.11). The pairs contribute through the > _ f,; term. The term
Z fi;fi-;» would be roughly zero in all the interactions in Fig. 9.1(a),
because the two factors are never both significant at once. This is

Fig. 9.1 Clusteringin a gas whose effective range of intermolecular potential
is R.

@ fe— R —
0
)

®
© ®

(a) A “moderately dense™ gas

e R —

(b) A “dense’ gas
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not the case in Fig. 9.1(b), and the second term has to be included
in the case of faaif s or f21fas + fisfio -+ fi2fs1, and so on.
Similarly, higher-order terms will arise as the complexity of the
clusters of interacting particles becomes greater.

Returning to the configuration integral, Eq. (9.6), with Eq. (9.11)

we obtain
Z :};f‘ [ (1 > f‘,-) 11 ar. (9.12)
3 i<j k=1

for moderately dense gases. Integration of the first term gives
simply V¥, so

= N
Zy= V¥ 4+ f o Dt I dn (9.13)
(3N) k=1

i<j

Equation (9.13) is extremely interesting because it reveals an addi-
tive form for the configuration integral that yields the ideal-gas
case from its lead term.

Since each individual f depends only upon r;; = [r; — 1), it is
possible to rearrange the 3N-fold integral in Eq. (9.13) without the
summation as follows:

: . .
[ J filriy) dry---dry = f f fi,(r:)) dv. d; ] o I] dre
3N IN=2) k=1

=i

= N2 j fij(ri;) dr; dr; (9.14)

The integral is broken down further with the help of a clever ap-
proximation. The position r; is of no interest to us unless it is very
close to r; (unless, of course, r, is near enough to a wall to interact
with it). We therefore imagine that the jth particle is at the origin;

we change fi,(r;;) to f,(|r.]); and we factor out [ dr;. The result is

[ ---ffu(fu) dry---dry = V¥ 3] dr}ffrl(r:)drf = Vv [ffu(rl)drl
[R5

(9.15)

But ff,;(r,)dr,- = 47r/ f(r>dr in a polar-coordinate repre-
0

sentation, where we drop the subscripts because we have no
further need of them. To carry out the summation in Eq. (9.13) we
need simply to observe that for N particles there will be N(N — 1)
2 ~ N2,2 identical terms in the sum. Thus Eq. (9.13) becomes

@

Ly = VN 4 Y-l 27.—N3f f(r)r> dr

0
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The above equation can be written in the form

_ |- VB
Z, =V [1 AT ] (9.16)

where

= - 2 - ) _— _2. 2
B(T) = ZTI'N_.\fU f(r dr—ZnNAf [1 exp( kT)]r dr (9.17)

0

The parameter B(T) is called the '‘second virial coefficient'’ and it
plays a most important role in the equation of state for non-ideal
gases as we shall indicate in the following sub-section.

It should be emphasized here that Eq. (9.16) is an approximate
expression based on the approximation made in Eq. (9.11). If higher
order product terms of f,; are included, it will result in a series ex-
pression for Z,

Zy = V‘\'I:l = NN‘?\(% e :| (9.16a)
Equation (9.16a), coupled with Eq. (9.7), provides the basis for de-
veloping a fundamental equation to describe gases for which ¢ is
known. Clearly the knowledge of ¢ will be of crucial importance in
developing realistic descriptions of dense-gas behavior. Before dis-
cussing potential functions for various molecular models, however,
we should like to introduce the virial equation of state which has
been widely used in calculations for non-ideal gases.

VIRIAL EQUATION OF
STATE

Of the many ‘“‘equations of state'' obtainable from the funda-
mental equation, the pressure relation,
dF dInZ,(T, V)
— vy e e S
dVir n av TN
is of most interest to us because it gives the p-v-T surface directly.
But Eq. (9.18) retains only the configuration integral contribution
from the fundamental equation! This is not an entirely new result.
It says merely that pressure depends upon action lodged wholly
within the translational mode — that only this energy mode in-
volves volume. Substituting Eq. (9.16a) in Eq. (9.18) and applying the

= (9.18)

power series expansion, In (1 4+ x) = x — x2,/2 4 -+, gives
_ NKT | N2kTB(T) L
VT ONavz
or
ROT  ROTB(T)
—— -4 I ;
p - 019

where vis the molar volume (v = N, V/N).
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The importance of Eq. (9.19) is obvious. The lead term repre-
sents the contribution of the ideal-gas behavior. Anything beyond
the lead termis called the internal virial (derived from the Latin vires,
meaning forces) because it is the result of intermolecular forces.
Likewise, the lead, or ideal-gas, term is sometimes called the ex-
ternal virial because it represents the external force imposed upon
the system by the walls.*

Because ultimate accuracy in predicting the internal virial is
not attainable, it is customary to express it in a power series,
usually in inverse volume or density. Thus

pv CB(T)  C(T) | —~ A(T)

o7 = 14 _TJFT*'"":,?:: — (9.192)
Accordingly, the first virial coefficient would be unity, the second
would be B(T), and so on. Many means exists for developing virial
equations of state. Often Eq. (9.19a) is simply used as a very effec-
tive formula for interpolating and extrapolating experimental data.
We have just seen how the higher terms can be approximated
formally using the methods of classical statistical mechanics.

VAN DER WAALS'S
EQUATION AND
OTHER RESULTS OF
ELEMENTARY
9.2 MOLECULAR MODELS
THREE SIMPLE MODELS FOR
MOLECULAR INTERACTION

The three models for the intermolecular potential energy func-
tion, ¢, that we wish to consider first are shown in Fig. 9.2, They can
be characterized as the noninteracting point particle [Fig. 9.2(a)), the
noninteracting rigid sphere of diameter ¢ [Fig. 9.2(b)], and the weakly
attracting rigid particle [Fig. 9.2(c)]. In each case the intermolecular
force, 3 = —d¢ dr, is sketched in an inset. In the present con-
siderations we consider attraction to be positive and repulsion to be
negative in sign.

If we go to Eq. (9.18) with ¢ for noninteracting point particles, the
resulting value of B(T) is zero and we obtain (as we would expect to)
from Eq. (9.19), the ideal-gas law.

The substitution of the potential for noninteracting rigid spheri-
cal particles results in a finite contribution from B(T), because

B(T) = ZwN..\U @ - 0y dr / a-1e er (9.20)

‘These ideas are developed quantitatively by J. 0. Hirschfelder, C.
F. Curtiss and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley &
Sons, Inc., New York, 1954, chap. 1.
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Fig. 9.2 Intermolecular potential functions for three very simple molecular
models. (Corresponding force versus distance behavior is shown in the

insets.)
2 A 7 v A 7
hToe
Toe= A
=-i -9 ——
Y
A
. To=oo
To-ee
0 = 0 = >
0 0 a
(a) Noninteracting point particle {b) Noninteracting rigid sphere
r=0,¢=0c0;r>0.9=0 r<o0.¢=o00.r>0.0=0
L \ ]
L "[.‘.J oo
-
To=-o=
— |
0 > r
P
(e Weakly attracting rigid particle
r<o.¢=c.r>g, 0= "
rt

where ¢ is usually taken as the closest approach of two particles. As
such it is equal to an effective diameter of the particles. Thus

a? dafo\3
B(T) = ZTIN_.\(3') 4|:-—3— (E) N_.\] (9.21)

Equation (9.21) is an evocative result; it says that the second
virial coefficientis four times the volume occupied by the molecules
themselves. However, if the reader visualizes the collision of — say
— two billiard balls, he can readily see that the presence of one
billiard ball excludes the center of the other from a sphere whose
diameter is twice o. It excludes the other ball from a sphere of
eight times its own volume. One half of this or four times its own
volume is chargeable to each of the two spheres. Thus B(T) is, in
this case, the covolume b or the volume excluded to any one
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molecule by virtue of the presence of the other molecules. Calling
4(4w/3)(e 2)* Ny = b, we then obtain the following equation of states;

ROT v

or since b << vin our present considerations we can write the right-
hand side as [1 — (b/v)]! and obtain an equivalent approximate
equation of state,

p(v— b) = ROT (9.22)

When we use the weakly attracting rigid particle potential in
Eq. (9.17),

B(T) = 27rNAlfcr r2dr -+ f'c [1 - exp( ¢ r"‘f)]r2 dr] (9.23)
0 p kT

But the requirement that attraction must be weak means that |¢, is
a small number, never more than e. Thus exp [(¢/kT)r ] ~1 +
(c/kT)r, so
3 Iy
B(T) = 27rN_.\(-‘;- b T )
This expression has no validity for v < 3, however v is typically

much larger than 3. This kind of limitation is discussed in Example
9.2. Since cg* 7, (3 — v) is a constant, this B(T) can be written as

da

B(T) = b— T (9.24)
For weak attractions in general, a is of the form
a=—2rN,2 / " R2¢(r) dr (9.25)
a

If we consider weak attraction in a gas for which the covolume is
negligible (b << a R"T), then

L N
ROT — RUTv
or
a RT
4+ 2 = 2
P+ ; (9.26)

*Hirschfelder et al., footnote 4, show that if cluster collisions are taken into
account, this purely geometrical equation of state takes the following power-
series form as the gas becomes more dense:

B 42 06250 4028692 4
ROT v ’ vz ' vi
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VAN DER WAALS’'S

Equations (9.22) and (9.26) represent two very important limiting
cases of moderately dense gas behavior. Equation (9.22) shows the
purely geometrical effect upon the ideal-gas law of molecules
“‘consuming’’ part of the space that they occupy. Equation (9.26)
shows that weak attraction accounts for part of the pressure that
molecules might otherwise exert upon the walls of their container.
These ideas provide the key to a very important early attempt to
describe real-gas behavior.

EQUATION

Van der Waals developed his famous equation of state in 1873
in an attempt to show the intrinsic continuity between the liquid
and gas states. He achieved his objective and gave us the most re-
markable equation of state yet conceived. It is utterly simple and
plausible, and it provides at least a qualitative representation of
every major feature of real gas behavior.

To make his prediction van der Waals suggested that real fluid
behavior was the result of two molecular effects. The first was the
occupancy of part of the free volume by the covolume; the second
was the removal of part of the pressure imposed by the walls, by
internal attraction. The corrections were made on the basis of in-
tuitive arguments, and they took exactly the form of these correc-
tionsin Eqgs. (9.22) and (9.26). But, whereas Egs. (9.22) and (9.26) were
subject to the ‘‘moderately dense'” assumptions set down in
Sec. 9.1, van der Waals’s simple physical assumptions were not. He
made both assumptions simultaneously and obtained the appropri-
ate combination of Egs. (9.22) and (9.26),

RT  a

v—b

(9.27)

for use over the entire range of fluid behavior. Equations (9.21) and
(9.25) give reasonable estimates of a and b for this equation as long
asitis applied only to moderately dense gases. However, we shortly
discover that much better estimates of a and b can be made from
critical data for use over the entire range of conditions.

The first quality of real gas behavior that we find borne out in
the van der Waals equation is the law of corresponding states. This is
an approximate empirical law which says that all fluids (at least
families of those that are thermodynamically “similar'’) can be
described by the same p-v-T surface in the transformed coordinates

o
—-‘
l<

(9.28)
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where the subscript ¢ denotes the thermodynamic critical point and
the subscript r identifies the reduced variables. Thus the law sug-
gests that there is a universal function

f(pr, vi, T,) =10 (9.29)

which will represent all fluids fairly well. We have more to say about
the microscopic basis for this law later. For the moment we wish
only to view it as observed macroscopic behavior.

Now suppose that the one point in the van der Waals sur-
face at which

2
% _ 0 and %p

avlr ~ avi, = ° (.30)

corresponds, as experimental results suggest it should, with the
critical point. The simultaneous solution of conditions (9.30) and the
van der Waals equation (9.27) gives

a = 3p.v.? (9.31)
Ve
b = 3 (9.32)
and
8 p.v.
0 — =
R 3T (9.33)

These conditions are used to eliminate the constants from Eq.
(9.27) so that it takes the dimensionless form

8T, 3

o = WM—1 v (9.38)

Thisisin the form of Eq. (9.29); therefore the van der Waals equation
is not only true to observation, but it also provides some basis for
the law of corresponding states.

Equation (9.33) bears out another aspect of real-gas behavior by
requiring that the compressibility factor Z = pv/R°T has a universal
value at the critical point
_PeVe 3

=T~ & (9.33a)

Zc

Experiments generally place this constant below . Table 9.1 gives
typical values of critical data and Z. which show that Z. varies from
about 0.3 down to about 0.22, depending on the complexity of the
molecule.
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TABLE 9.1 Critical Data for Several Types of Substance

Comparison with
Observed values molecular values®

Pes T., Ves PeVe
Substance Type atm °K cm3/gmole  R°T. | p./p.* T.,/T5 wv/v.*
Argon Almost |48 151 75.2 0.291 0.243 1.26 1.51
H2 spherical, [ 128 33.3 65.0 0.304 | 0.134 0.90 2.05
Helium nonpolar 2.26 5.3 57.8 0,300 0.057 0.52 2.75
N2 | 335 126.1 90.1 0.292 0.274 1.33 1.41
02 : 49,7 154.4 74.4 0.292 0.297 1.31 1.28
Xenon | 57.89 289.81 120.2 0.293 0.276 1.31 1.38
CHa4 45.8 190.7 99.0 0.290 0.264 1.29 1.41
Propane Hydro- 42.0 370 195.2 0.270 |
n-Butane carbons 37:9 425.2 248.5 0.257 |
Ethane 48.2 305.5 144.5 0.267 l
n-Hexane 29.9 507.9 359 0.260
Benzene 48.6 562 254.5 0.265
Ethylene 50.5 282.4 121.4 0.291
Steam Polar 218.0 647.3 56.8 0.233 0.164 1.70 2.35
Ammonia molecules 111.3 405.5 70.8 0.238 0.094 1.27 3.20
Methanol 78.5 513.2 115.1 0.220 0.027 0.82 6.59
Methyl 65.9 416.3 139.8 0.258 0,107 1.10 2.75

chloride

sMolecular data for spherical molecules are based on the Lennard-Jones potential. Molecular
data for polar molecules are based on the Stockmayer potential.

Now let us return to van der Waals's original thesis — that the
liguid and gas states are intrinsically continuous. Figure 9.3 shows
severallines of constant temperature on the van der Waals surface.
When T < T,, v becomes triple-valued in p but the conventional
liguid-vapor transition is not in evidence. However, if the gas and
liquid are to coexist in (stable) equilibrium at one temperature, the
chemical potentials must be equal in the two phases,

g
be — by = fr dulr = 0 (9.36)

or

fg(vdp—sdr)wfgvdp:o (9.36)
i f
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2y

Fig. 9.3 Isotherms of the van der Waals equation of state. (Not to scale — v,
coordinate stretched on the left.)

Critical point
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M

Equation (9.36) is satisfied only if the liquid-vapor equilibrium states
are located such that areas A and B in Fig. 9.3 are equal.

The resulting locus of saturated liquid and vapor states is
shown as a dashed line in Fig. 9.3. The corresponding vapor-pres-
sure curve is similar in form to that of real fluids, although it pre-
dicts saturation temperatures that are low by asmuch as 35 percent,

Itis in the region between f and g that the equation best dis-
plays its remarkable fidelity to real fluid behavior. The two regions
of negative slope, fto M and b to g, are regions of metastable equi-
librium. The region of positive slope, M to b, can be shown (Problem
9.4) to be unstable — no states can persistin it. The points M there-
fore represent the maximum superheat that a liquid can sustain
(or the minimum pressure that a liquid of a given temperature can
sustain).

The van der Waals equation predicts that at low temperatures
liquids sustain enormous tension — a fact that has led some au-
thors to take the equation lightly. In recent years measurements
have been made that reveal this to be entirely correct.b Liquids that

6See, e.g., H. N. V. Temperley, “The Behavior of Water under Hydrostatic
Tension: I, Proc. Phys. Soc. (London) 59, 199 (1947).
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are clean and free of dissolved gas can be subjected to tensions
greater in magnitude than p.. The reason is that, as the molecules
become closely packed, the weak attraction forces become rela-
tively very strong and serve to hold the liquid together. By the same
token, it is possible to superheat liquids at constant pressure to
temperatures hundreds of degrees in excess of their boiling point
before enough thermal expansion has occurred that the relatively
short-range attraction forces become small with respect to mole-
cular momentum, and the fluid must come to a new equilibrium
in the gas phase.

The equation also shows that, in the limit as either the tempera-
ture is lowered or the pressure is increased, the fluid will reach a
minimum volume equal to b — on the order of the covolume — and
that this is one third of the critical volume. For example, v/'v.=1/3.14
for water at its triple point.

The van der Waals equation also provides some understanding
of the *‘caloric,”” or heat-capacity, behavior of a real fluid. The clas-
sical expression for the effect of isothermal compression upon
an ideal gas is

P 0y
c,— C = T
A -/“ aT?

where ¢, is the specific heat for very low pressures. But the inte-
grand passes through infinity at points M and b and is negative in
between. If it were possible to add heat in this range, the result
would actually be to cool the gas, because the resulting expansion
would return more potential energy of interaction than it would
absorb kinetic energy.

Thus, if we remember that c, T = (ds 'dT), we can readily see
that isobaric lines in the T-s plane must exhibit two points of zero
slope connected by a region of negative slope. Real fluids accord-
ingly behave as shown in Fig. 9.4 in the two-phase region in T-s co-
ordinates. For lines of constant pressure, Eq. (9.36) takes the form

dp (9.37)

P

]” (vdp — sdT), = —j YsdT =0 (9.38)
f r

which tells us that areas C and D must be equal in this figure.

These are only a few of the attributes of real fluid behavior
described by the van der Waals equation. It can also be used to
make a prediction of the variation of latent heat of vaporization
with pressure, which is correct in shape but low in magnitude, to
estimate surface tension, to show how pressure influences energy
and enthalpy, and so forth.

As we now turn our attention back to the complications of statis-
tical-mechanical methods, it is with the intention of developing
accuracy that the van der Waals equation fails to provide. We do not
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Fig. 8.4 Typical real-gas isobaric line in the T — s plane.
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again achieve so total and simple a description of behavior, how-
ever.

EXAMPLE 9.1 Estimate the pressure exerted by intermolecular
forces in water at 300°K and 1 atm.

This is a very ‘‘dense gas'’' and our best estimate is that given
by the van der Waals equation,

p of intermolecular forces = — —

But, from Eqg. (9.31),

a = 3p.v.t = 3(218.3 atm)(3.135 cm?, g)* = 6450 atm-cm®, g2

and, from Eq. (9.32),

b= % ~ 1.084cm3/g

Finally, for compatibility we must use Eq. (9.33) for R, instead of the
actual value,

_ 8pew

0 —
=T

= 2.815 atm-cm3/°K-g

Thus van der Waals's equation,

RT a atm-cm3) 300 °K-g G@a
2

v—b vz K-g 4cm? tm

p= (2.815

v— 1044 cm?
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can be solved by trial and error for v at p = 1 atm. The smallest
root is

v = 1248 cm?/g
Therefore,

6450
1.2482

p of intermolecular forces = — atm = —4130 atm

This might seem at first glance to be an incredible result. It says
that the intermolecular pressure is thousands of times the pres-
sure exerted on the walls. Butit only serves to emphasize the enor-
mous resistance that a liquid offers to being torn apart. This
pressure is balanced by the tiny pressure exerted by the wall and
the immense momentum of the densely packed molecules.

INTERMOLECUILAR
POTENTIAL
9.3 FUNCTIONS

NATURE OF
INTERMOLECULAR

The prediction of a second virial coefficient, accurate enough to
give a useful description of moderately dense gas behavior, re-
quires an accurate knowledge of the molecular potential function.
We first consider the character of the intermolecular forces that
form the varied potentials of different molecules. Itis then possible
to show how actual ¢ functions evolve from these forces.

FORCES

A variety of kinds of force fields are at play between two par-
ticles as they undergo an encounter. These fields are widely
different in character; some attract and some repel; some depend
upon particle orientation during collision; and they are not always
independent of one another. Because of the complexity of the
forces, any attempt to put them together in a single potential func-
tion must necessarily resultin some inaccuracy. We now attempt to
catalog the basic kinds of forces.

1. Electrostatic forces are the interparticle forces arising be-
cause the particles are electrically charged. The elementary
Coulomb force between two charged particles are proportional to
the inverse square of the spacing, r, and negative (or repulsive) for
like charges. Thus their contribution to ¢ is ¢us,

C.Cs

¢m‘| = —r_ (939)

where C, and C, are the charges on the two interacting particles, a
and b. This potential is negative, and the resulting force attractive,
if the charges differ in sign.
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When the particles have a finite dipole moment u — that is to
say, opposite sides of the particles are oppositely charged — the
electrostatic forces are of higher order and varied in character. If
the intrinsic angular dependence is averaged out,” we obtain for the
interaction between a charged particle and a point dipole

C22
CH) = ——
at 3KTr (9.40)
and for an interaction between two point dipoles,
2 uZ 2
PapH ) = SRR (941)

3kTre

When quadrapole particles are brought into the picture, other in-
verse power interactions (r—® and r19) result. Examples of common
dipolar molecules include H.0, NCI, aniline, and the alcohols.

The simple Coulomb forces drop off slowly with distance and
are relativelylong range in character. The various dipole and
quadrapole interactions, on the other hand, are only effective at
very short range by virtue of the r4,..., r 10 factors, and they
generally become negligible at high temperatures.

2. Induction forces occur when a permanently charged particle
or a dipole is brought into the proximity of a neutral particle. The
effect is that a dipole is induced in the neutral particle. If we intro-
duce a quantity «, the polarizability of the neutral particle, then for
the interaction between a charged particle and a neutral particle,

C2
bor = — gj‘ (9.42)

and for the interaction between a dipole and a neutral particle,

Gap = —‘L—c-:g (9.43)
The induction forces are always present and are uninfluenced by
temperature. They are also usually fairly small in comparison with
the dispersion and repulsive forces, forces 3 and 4. They do not fall
off at high temperatures the way dipole-dipole and dipole-charge
interactions do.

3. Dispersion forces are those that arise between two transient
dipoles in neutral particles: one dipole is that induced in the elec-
trons of one particle by the dipole in the other; the other dipole is
the result of the instantaneous asymmetry of the electric field as-
sociated with the moving electrons of the approaching particle.

‘See, for example, Hirschfelder et al., op. cit., chaps. 1 and 13.
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This force is attractive and fairly strong. It is the basic ‘‘van der
Waals'' force of short-range attraction and it takes the form

3 h vah Vi Opp

" 2hv, + huy 19

bur = (9.44)
where hv, and hy, are characteristic energies approximately equal to
the ionization potentials of the particles.

4. Repulsion at very short range occurs as the result of the elec-
tronic orbits of two molecules coming into overlapping range. The
forces can not be measured with much accuracy but are usually
approximated by a repulsive potential of the form

constan
bur = —f‘—t 9<k<15 (9.45)
These electronic or valence repulsions are also sometimes approxi-
mated with an exponential function of the form

¢ = ae (9.46)

where a and b are constants related to ionization properties of the
particles.

ANGLE-INDEPENDENT,
SEMIEMPIRICAL POTENTIAL
FUNCTIONS

The potential function for a given type of particle is a combina-
tion of the various components we have just described. Butitis very
important that the combination assume a simple enough analytical
form to permit its use in the configuration integral. Figure 9.2 dis-
played three very simple approximations to real potential functions.
Of these, only the weakly attracting rigid-particle potential, shown
in Fig. 9.2(c), makes any attempt to include any of the attractive
forces, and repulsion is approximated by a sudden infinite re-
sistance. This is called the Sutherland potential.

A variety of refined potential functions have been developed to
provide reasonable accuracy while retaining some simplicity. We
discuss five of them here. They are (1) the Sutherland potential,
which we have already used; (2) the point center of repulsion; (3) the
square-well potential; (4) the Lennard-Jones potential; and (5) the
Buckingham potential. Potentials 2, 3, 4, and 5 are shown graphically
in Fig. 9.5. The analytical expressions for the potentials are also
given in the figure.

The point center of repulsion is useful when a differentiable po-
tential function is needed to express relatively rigid repulsion. It
also leads to simpler mathematical descriptions of collisions in
some respects than does the rigid noninteracting sphere. The
second virial coefficient can be evaluated as follows for this model.
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Fig. 9.5 Fourcomparatively sophisticated intermolecular potential functions.
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where a,b’, ¢, and ¢’ are constants

EXAMPLE 9.2 Evaluate the second virial coefficient for a gas com-
posed of point centers of repulsion.

In this case, ¢ = constant r-%. Then from Eq. (9.17) we obtain

o

B(T) = 27rNA/ [1— exp(—ar®)r2dr P COf‘I:‘.;ant
0
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Now let us pick an ro for which arg~? is fairly big — say, on the order
of 2 or more. Then exp (—ar %) will be much less than unity for
0<r<r,and

B(T) «-2::-.-’\"_.\|fnru 2 dr rf [1 Zu(;é:__lfi)‘]rz dr}

or

= g
B(T) ~ %WNA.FU:*[I +3 ; 5! (Saf ;.s)“)]

This result is limited to 8 > 3. 1f6 < 3, B(T)isinfinite. The physi-
cal meaning of this can be explained in the following way. The
energy needed to bring particles from infinity to within r of the
particle of interest is ¢r—?, and the number of particles at a distance
ris proportional to r2. It follows that the energy required for a sur-
rounding gas to be placed about the particle is proportional to

[ ’ (r8)(r?) dr
Jo

and this is infinite for all 8 < 3. This means that no walls could con-
tain such a gas.

The expression that we have derived for B(T) becomes in-
creasingly accurate for larger and larger values of ar %, but more
and more terms are needed in the summation. There is some
value of ar® on the order of magnitude of unity which optimize con-
vergence and accuracy. The ry corresponding with the value would
be an approximate effective o for the particle; thus our expression
for B(T) reduces to

27Nagd  (number on the
B(T) = 3 ( order of unity

which we might have anticipated.

The Sutherland potential [Fig. 9.2(c)] is a widely used and
reasonably accurate approximation. We can show (Problem 9.8)
that the second virial coefficient is in general

~ 1 3 Y
aan - o1 - 2 o) | G40
where b is the covolume, and v, ¢, and o are explained in Fig. 9.2(c).
Equation (9.47) contains Eq. (9.24) as a special case.

We might do well to look at the square-well and Lennard-Jones
potentials simultaneously. The square-well potential is a kind of
blocky imitation of the more accurate Lennard-Jones potential, and
the results of the two are somewhat similar. The second and third

) ~ effective covolume, b
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virial coefficients have been worked out for the square-well poten-
tial. The former is

B(T) = bll - (R? — 1)[exp (f:?) — IN (9.48)
where R and ¢ are defined in Fig. 9.7(b).

The Lennard-Jones potential is given in its most familiar, *'6-12,"
form in Fig. 9.7(c). Thatis, the exponents of the two terms in brack-
ets are chosen as 12 and 6. It accordingly combines a strong re-
pulsion with a dispersion attraction. The second virial coefficient for
this case does not come out in a closed general form. However, it
compares well with Eq. (9.48) when ¢, = 0.56¢;; and R = 1.85. Very
broad use has been made of this function, and a third virial co-
efficient has been computed.

For purposes of comparing the second virial coefficient for the
Lennard-Jones potential with other values, it is convenient to define
=K and B+=5 (9.49)

€ b
Then the second virial coefficient for the Lennard-Jones potential
can be putin the following dimensionless form:

B* — B*( T*)

On the other hand, Eq. (9.48) can be divided by b to give B* for the
square-well potential in the form

B*=1— (R} — 1)|:exp (—;*) - 1] (9.48a)

The quantity R is very nearly 1.85 for many simple molecules and it
remains on this order of magnitude for a large variety of sub-
stances. Thus B* is of approximately the same functional form as
B* for the Lennard-Jones potential.

The second virial coefficient for the Lennard-Jones potential is
plotted in the generalized coordinates, B* versus T*, in Fig. 9.6.
Equation (9.48a), based on R = 1.85, is also included in this graph
for comparison. The two curves are very similar to each other in
form, and the Lennard-Jones plot matches experimental data for
many substances, very closely.

The Buckingham potential is a refinement of the Lennard-
Jones potential, intended to take better account of the short-range
valence effects. Although it does this, it also introduces an incorrect
singularity atr = 0. This singularity can be avoided in making many
of the calculations that one normally uses potential functions for.
Another more complicated modification, called the Buckingham-
Corner potential, eliminates the singularity but does so at the cost of
further complicating the equation for ¢.
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Fig. 9.6 Generalized second virial coefficients for the Lennard-Jones and
square-well potentials.
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It would be well to understand at this point that these poten-
tials are empirical in the sense that they include such parameters
as g, ¢, and r,. These parameters are often obtained by comparing
the resulting equations of state with thermodynamic data rather
than by proceeding directly from measured molecular parameters.
The value of the resulting equations of state is judged by how well
they represent data in the moderately dense gas region. They are
not expected to provide good descriptions for the entire range of
fluid behavior.

ANGLE-DEPENDENT
POTENTIAL FUNCTIONS®

Intermolecular potential functions might be asymmetric by
virtue of a nonuniformity of attractive forces, such as would arise
from a dipole. They might also be asymmetric by virtue of nonuni-
formities of the very short range repulsive forces.

In the latter case the particle is effectively asymmetric in its
geometrical form. Accordingly, a number of rigid noninteracting
particle models have been formulated for molecules for which
shaort-range repulsion dominates. Consideration has been given to
cubes, tetrahedrons, octagons, cylinders, prolate and oblate
ellipsoids, and to cylinders with spherical ends. Second virial co-
efficients have been computed and used to predict the properties
of real gases at moderate densities.

iSee Hirschfelder et al., footnote 4, sec. 13.10a, for a relatively complete
coverage of angle-dependent potential functions.
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By the same token, a good deal of work has been done toward
treating asymmetric attraction. Typical of these is the Keesom
model. Keesom envisioned a rigid spherical molecule containing a
dipole and suggested that

@ forr<e

— — 2
&, 01, 02, $2 — ¢1) = 2 400, 2, 62— 90 forr > o 50

where the four angles define the relative orientations of the two
dipoles as shown in Fig. 9.7 and the factor g is

g = 2 cos fl; cos f; — sin 6 sin #2 cos (¢2 — ¢1)

Almost 30 years after Keesom suggested this model in 1912,
Stockmayer improved upon it by combining it with the relatively
short range Lennard-Jones forces as follows:

O (GG S

The u?/r* factorin the dipole term can be shown to be characteristic
of a dipole-dipole interaction. It was the averaging of such a term as
utg/r* that led to Eq. (9.51).

Fig. 9.7 Schematic diagram showing angular coordinates of dipole orienta-

tion for two dipole particles.
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Second and third virial coefficients can be worked out for gases
for which these potentials apply, if appropriate methods of averag-
ing are used. For the Keesom potential the second virial co-
efficient is

_ ey 1 Jf..)“_-_z_g_( #2)“_ ]
B(T, w) = b[l 3(03“) 75 (JSkT 55125\ akT)
(9.52)

For the Stockmayer potential, B(T, x) and C(T, p) are complicated,
but they can be reduced to the following dimensionless forms:

B¥(T*, u*) = B—(E’ B and KT u) = 9—(2’ B (953)

where

wt = = (9.54)
Vea?

EXAMPLE 9.3 Express the Joule-Thompson coefficient, oT 'dpl,
in terms of the intermolecular potential, through the second virial
coefficient.

The formula for the Joule-Thompson coefficient is

aT _ T(av/aT), — v

‘:'Ek Cp
but
pv_ 4, B,
ROT v +
or
RT  B(T) ROT
= — g + B
V="t e 5+ B
S0

aT) _ 1] ,9B(T) _ ]
apL B c,,[T aT BT

This can be putin terms of B* and T¥#,

C; aT| N aBX(T*) g*
baply, dInT*

so the right-hand side can be evaluated directly from plots similar
to Fig. 9.6.

As a point of interest, we note that this expression predicts that
the Joule-Thompson inversion point, (8T/dp):, = 0, will occur where

dIn B*

din T*
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DETERMINATION OF THE

PARAMETERS OF ¢

The parameters g andein the Lennard-Jones potential are most
commonly obtained by comparing the predicted second virial co-
efficients with second virial coefficients obtained from data. This
may seem to be a circular procedure. However, many advantages
acrue from it. Equations (9.52) and (9.53) give analytical form to
B(T) and make extrapolation possible. Furthermore, the potentials
can be used in the prediction of transport as well as thermodynamic
properties.

Table 9.2 gives values of o and ¢/k determined in this way, as
well as the polarizability « for a variety of common gases. The
latter is needed in the prediction of potentials for interactions be-
tween polar and nonpolar molecules. The numbers given for ¢/k
and ¢ are sometimes obtained from viscosity data instead of ex-
perimental B(T)'s. When this is done, the resulting values may
differ somewhat from those given here.

TABLE 9.2 Constants for the Lennard-Jones Potential,
and the Polarizability, of Common Gases

[computed from experimental values of B(T)]

Gas ¢/k, °K oA a 1025 cm?
He 10.8 2.57 =

Ne 35.8 2.75 =

Ar 119.7 3.41 —

H, 36.7 2.96 7.9

N2 95.1 3.70 17.6

02 117.5 358 16.0

co 100.2 3.76 19.5
CO; 187.5 4.47 26.5
CHs 148.1 3.81 26.0

Several rough empirical relationships have been developed to
estimate ¢/k and ¢ for those instances in which appropriate B(T)
and viscosity data are unavailable. One such pair of relationships
(cf. Table 9.1) is

cm3-atnj T
OK Pu

=0.77T.  and b = b(e) =184 (9.55)

<

k

Table 9.3 gives the constants for the Stockmayer potential,

along with the dimensionless dipole moment u* for five typical polar
molecules.
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TABLE 9.3 Constants for the Stockmayer Potential
[computed from experimental values of B(T)]

Gas /k, °K o, A u*
H.0 380 2.65 1.85
NH;3 320 2.60 1.68
CH;:Cl 380 3.43 1.30
CH3;0H 630 2.40 1.51
n-CiH70H 866 2.61 1.19

EMPIRICAL LAWS FOR
INTERACTIONS BETWEEN
TWO DISSIMILAR MOLECULES

Tables 9.2 and 9.3 — like most tabulations available in the litera-
ture —are only applicable to molecules of the same chemical
species. To calculate the thermostatic properties of mixtures, how-
ever, we must know the potential function that describes the inter-
action between molecules of two different species. It turns out that
the best way to infer this information is through a method involving
the temperature dependence of measured binary diffusion coeffi-
cients Di2. Since such data are not generally available for all cases
of interest, we shall look briefly at some reasonably adequate
empirical relations for estimating the Lennard-Jones and Stock-
mayer parameters.

Designating the two species as 1 and 2, we can use arithmetic
and geometrical means, respectively, for ¢ and e:

T = _;‘” and e = Veae (9.56)

Similarly, the dimensionless dipole moment u* can be expressed as
a geometric mean,

w2 = \pip*s (9.57)

When a polar molecule (p) and a nonpolar molecule (n) interact,
comparable expressions can be used:

o =22 ;1 £ and  en = Ve (9.58)
where
- : (X*n#*p 'r;
F=14 [ (9.59)

and where, in turn, o*, is the polarizability of the nonpolar molecule
divided by o3.
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SOME NUMERICAL VALUES
OF VIRIAL COEFFICIENTS

Since the accuracy of the computation does not warrant it,
theoretical evaluations of virial coefficients are seldom extended
beyond the third one, C(T). Experimental applications of the virial
equation, on the other hand, often make use of many terms and
achieve very high accuracy.

We have thus far laid fairly heavy stress upon the Lennard-
Jones and Stockmayer potential functions because they have
proved to give as good accuracy as can be expected from such
simple expressions. The dimensionless second and third virial co.

TABLE 9.4 Functions Used in Virial-Coefficient Calculations®

*
3
-
3
*
ra
*
re
*
¥
-
[

e =02 S =04 a0 L-08 L -10
1 48 \8 V8 V8 V8 \8
B*(T*, u*)

0.30 ~27.88 —42.97

0.50 —8.720 ~10.40 —17.03 ~36.36

0.75 —4.176 —4.630 —6.163 —9.413 —16.05 ~30.4

1.00 —2.538 —2.744 —3.402 —4.657 —6.820 —10.54

1.25 —1.704 —1.821 —2.187 —2.852 —3.915 —5.559

1.50 —~1.201 —1.277 ~1.511 —1.925 —2.561 —3.490

2.00 —0.6276 —0.6671 —0.7875 —0.9953 ~1.302 —1.727

2.50 —0.3126 ~0.3370 —0.4108 —0.5368 —0.7194 —0.9658

3.00 —0.1152 —0.1318 —0.1820 —0.2671 ~0.3892 —0.5517

4.00 —0.1154 0.1062 0.0784 0.0316 —0.0349 —0.1221

5.00 0.2433 0.2374 0.2197 0.1898 0.1476 0.0926
10.00 0.4609 0.4593 0.4547 0.4469 0.4359 0.4218
50.00 0.5084 0.5083 0.5080 0.5076 0.5071 0.5064
100.00 0.4641 0.4641 0.4640 0.4639 0.4637 0.4635
400.00 0.3584 0.3584 0.3583 0.3583 0.3583 0.3583

CY(T*' “*)

1.0 0.4297 0.5304

2.0 0.4371 0.4826 0.6496 0.995 1.59 2.46

25 0.3811 0.4076 0.5195 0.6871 0.999 1.482

3.0 0.3523 0.3692 0.4275 0.5403 0.7248 1.002

4.0 0.3266 0.3350 0.3630 0.4156 0.4986 0.6194
10.0 0.2861 0.2871 0.2902 0.2957 0.3039 0.3151

*R. B. Bird, J. O. Hirschfelder, and C. F. Curtiss, “The Equation of State and Transport Proper-
ties of Gases and Liquids,” Handbook of Physics, 2nd ed. (E. V. Condon and H. Odishaw,
Eds.) McGraw-Hill, Inc., New York, 1967, chap. 4.
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efficients for the Stockmayer potential [recall Eq. (9.53)] are general
and can be applied to any gas for which the parameters u, ¢, and b
are known or can be estimated. Furthermore, they reduce to
Lennard-Jones values when p vanishes. Accordingly, we give nu-
merical values of these coefficients in Table 9.4. The B(T, u) values
calculated from Table 9.4 compare very well with experiment, but
C(T, u) values are only moderately accurate.

The numerical values in Table 9.4 can also be used to obtain B
and C for mixtures. The idea is comparatively straightforward, but
the method is not very simple in execution; we write

Buix = 2 2 XiX;Bij (9.60)

i=1 j=1

and

¥

21 > Ix,-x,-ka‘- Jk (9.61)
=] k=

7

Conix = Z]
where there are v componentsin the mixture. The terms B;;and C,;;
are the conventional second and third virial coefficients for a single
(jth) species. The B;,'s are calculated on the basis of ¢;; and ¢;; for
each of the component binary interactions. The C;;.'s have a similar
meaning for three particle interactions. The x's are mole fractions
of the various species. Equations (9.60) and (9.61), of course, repre-
sent simple weighted averages of the appropriate component
values of B and C (see Problem 9.13).

LAW OF
CORRESPONDING
STATES—

9.4 APPLICATIONS

CORRESPONDING p-v-T STATES

The law of corresponding states, which was explained briefly in
Sec. 9.2, deserves further attention at this point. We first discuss
the use of the p-v-T statement of the law given by Eq. (9.29) and then
proceed to show how it can be extended to describe other proper-
ties. Although we took care to identify the law as a physical hy-
pothesis, separate from the van der Waals equation, the discovery
of the law is actually credited to van der Waals.

The really important feature of the law is that it provides the
most utilitarian general description of dense-gas behavior that
there is. It is frankly empirical in application and it makes up the
accuracy that is lacking in the van der Waals equation. It turns out
that p-v-T data correlate better on a Z-p,-T, surface than on a
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Compressibility factor Z

0.90

0.60

0.50

0.40

0.30

p-~v,-T, surface; therefore, Eq. (9.29) can be restated in the following
way. First we write the compressibility factor Z

PV _ PV P _ PV, (9.62)

2= pT T ROT. T, T,

i

Then, since p.v./T, = (p,/T)v(p:, T.)] = f(p., T,), and Z. is approxi-
mately a universal constant,

Z=fp, T) (9.63)

Equation (9.63) can be used directly as a means for correlating
data. From p-v-T data for a given substance at a given T,, Z values
can be computed and plotted against p,. This was first done by Su,?
who found that data for 17 comparatively simple substances cor-
related within about 3 percent. Figures 9.8 and 9.9 are such charts
as prepared by Nelson and Obert.!® The data points in these
figures have been removed, and what remains are families of Z
versus p, curves for different T,. The curves give their best accuracy
when they are used for substances that are thermodynamically

Fig. 9.8 Nelson-Obert generalized compressibility factor, 0 < p, < 1.0.

T,=5.00
r 3.00
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—_— AT — e :
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FANS e s T —
(-]
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1.00 ~ ‘g

0.95 . ~ \?

030 fr  Note: T,= 25 z=1.00 "~ \
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0.0 — — —Deviation > 1.0% \ \\

0.75 \\ LY
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1 1 ! L I 1 \

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Reduced pressure p,

“Goug-Jen Su, “'Modified Laws of Corresponding States, **Ind. Eng. Chem. 38,
803-806 (1946).

10See, for example, E. F. Obert and R. A. Gaggioli, Thermodynamics, 2nd ed.,
McGraw-Hill, Inc., New York, 1963, chap. 10 and app. B.
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THERMODYNAMIC
FUNCTIONS

similar to those upon which the curve is based —in this case,
molecules with fairly simple molecular structure.

Both Figs. 9.8 and 9.9 include another family of cross plots.
These are lines of pseudo-reduced volume, v/,, where

v(T,, p) = ﬁ = Zv(T, p) (9.64)
It turns out that this variable correlates more accurately upon Z
versus p, coordinates than does v,. Although these lines are of some
interest, the most accurate computation of v for a given T and p will
be made with Eq. (9.63) and not Eq. (9.64).

Isotherms on the chart for the low-pressure range (Fig. 9.9)
terminate to the left of p, = 1in what should be the saturated vapor
line. Unfortunately, saturated vapor data correlate only rather
coarsely in reduced coordinates, and this line is subject to fairly
great error.

All the thermodynamic functions — u, s, g, f, h, and so on — can
be expressed solely in terms of p-v-T data and specific-heat data
for low pressures, Enthalpy, for instance, can be computed above
a reference datum at the liquid triple point by integrating the
well-known relation

vl
h=c, ' - T
d c,dT + (v T{,}T!p) dp
to give the enthalpy above some low-pressure reference or datum
enthalpy, hy:

h — ho = (h* — h*) + (h — h*) (9.65)

where the asterisks denote ideal-gas enthalpy changes computed
by integratingc, dT. The term h — h* represents a pressure correc-
tion at the temperature of interest,!!

s ["(y— T
h—h _fm(v ToT

which can be written

) dp = TAf(p,, T.) (9.66)
p/T

_TLH*'—H
M T

h— h* = (9.66a)

!'This step is a consequence of the law of corresponding states and involves
some development. Details of this and other extensions of the law of corre-
sponding states are given by 0. A. Hougen, K. M. Watson, and R.A. Ragatz
Chemical Process Principles, Part Two, Thermodynamics, John Wiley & Sons,
Inc., New York, 1959, chap. 14.
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In this case H is used to denote the molar enthalpy and M is the
molecular weight.

The quantity (H* — H) T. is called the generalized enthalpy
defect. Itis obtained by graphical differentiation and other process-
ing of the generalized compressibility factor, Z. The results are
plotted on what is called an enthalpy-defect chart, shown in Fig. 9.10.

Many other applications of the law of corresponding states to
the predictions of properties exist. Entropy-defect charts and the
pressure corrections for ¢, are among those very commonly pre-
sented, for example. To pursue these applications further would be
beyond the scope of our presentinquiry, however. We return to the
law again in the context of transport properties at the end of
chapter 11.

SOME FINAL OBSERVATIONS
ON THE MEANING OF
CORRESPONDING STATES

We have thus far taken the view that the law of corresponding
statesis simply an empirical result that happens to be borne out by
van der Waals’s equation. Actually we could have inverted the argu-
ment and offered the van der Waals equation as a rough molecular
justification for the law.

A more careful attempt to make a molecular justification of the
law shows that other forms of the law might also be admissible. If,
for example, the potential takes the form

¢ - f(:;) (9.67)

the resulting equation of state turns out (Problem 9.18) to be
p* = p*(v*, T (9.68)

where the additional parameter, v*, is
vE = = (9.69)

Equation (9.67) includes the utilitarian Lennard-Jones potential,
the square-well potential with a particular value of R, and other
forms of ¢. The resulting equation of state, Eq. (9.68), is approxi-
mately the same for the different but similar potential functions.
This implication of an approximate universality of Eq. (9.68) was
borne out by Fig. 9.6, which showed that similar second virial co-
efficients appeared in this coordinate scheme for different approxi-
mations to ¢.
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It is possible, in this connection, to identify molecular critical
data:

pr="2t Th=7 vi=b (9.70)

We have already noted [Eq. (9.55)] that T*, thus defined, is roughly
77 percent of measured T, values. Similarly, v¥, is (}) % (the van der
Waals v.). These values can be obtained from Table 9.1 for a variety
of common substances. Table 9.1 reveals that, at least for almost-
spherical molecules, the molecular critical data stand in reasonably
constant proportion to p., T, and v..

Thus the law of corresponding states clearly has its origins in
microscopic behavior and we are in a position to predict, for ex-
ample, the Z charts for a Lennard-Jones gas. Such a prediction
would not reach the accuracy of the existing Z charts so we do not
do it. Nevertheless, with greater refinement, we have the means at
hand for improving on the accuracy of the charts in special cases.

Problems 9.1 Verify that Eq. (9.2) is the proper expression for Q for the

hybrid U; under consideration. Where did the factor of N!'' come
from?

9.2 Obtain the ideal-gas law directly from Eqg. (9.6) using the
appropriate potential, ¢.

9.3 Verify Egs. (9.31), (9.32), (9.33), and (9.34).

9.4 Prove that a system is unstable if for all processes that it
can undergo, (dp dv)r > 0, or (4T ds), < 0.

9.5 Show that the pressure at the point of maximum liquid
superheatin a van der Waals fluid is given by 3 — 2 v, v, 2, where
v, is the volume at that point.

9.6 Verify Egs. (9.36) and (9.37).

9.7 Show that all virial coefficients are temperature-inde-
pendent for a gas of hard spherical molecules.

9.8 Evaluate B(T) for the Sutherland potential.

9.9 Compare b as given by Eq. (9.55) with the van der Waals
value.

9.10 Determine the p-v-T relationship and c, for a classical mon-
atomic gas of rigid spheres in a gravitational field.

9.11 Sketch the following potential function and identify o, e,
and as on the sketch:

( o r <o
€ r
o(r) = 4 P 1(0 — a) 7 <r<ae
([0 r>ac

Compute the second virial coefficient for this potential.



276

thermostatic properties of dense fluids

9.12 Estimate the Joule Thompson coefficient as a function of
temperature for argon, using the square-well potential.

9.13 Obtain Eq. (9.60) formally, beginning with the canonical
partition function for a two-component mixture.

9.14 A mixture of two gases undergoes an isentropic expansion.
How does the entropy of each component behave if (a) one is a
monatomic ideal gas and the other is a diatomic ideal gas, (b) both
arerigid-sphere gases with (¢,/¢2)} = !, (¢c) both are Lennard-Jones
gases with ¢, = o2 and 2¢; 'k = e /k.

9.15 Compute the specific volume of air at 500 psia and 68°C by
finding the *‘corresponding” point in the steam table and applying
the law of corresponding states directly. Check this result in two
ways: (a) use the generalized compressibility-factor charts, and (b)
obtain a tabulated value of v for air.

9.16 Use van der Waals’s molecular model to explain, qualita-
tively, why Z exceeds unity in certain ranges of the Z charts.

9.17 Steam at 1000 psia and 800°F is subjected to a Joule-Thomp-
son expansion to atmospheric pressure. Predict the temperature
change using the enthalpy-defect chart. Check your result with
steam tables. (¢,” ~[0.433 + 0.0000166T°R] Btu. Ib.-°R.)

9.18 Verify that Eq. (9.68) follows from Eq. (9.67).

9.19 An adsorbed surface layer of area A consists of N atoms
that are free to move and interact with each other according to a
potential ¢(R) that depends only on their mutual separation, R.
Find the fundamental equation of this surface layer.



thermostatic properties
of solids and liquids

We have devoted considerable effort, thus far, to the treatment of
ideal gases, but only in chapter 9 was the effort expanded to the
treatment of weakly interacting, or moderately dense, gases. The
complexity involved in the statistical-mechanical description of
such gases increases as the density increases and molecular
interaction becomes more pronounced. The molecules in a solid
are subject to extremely strong intermolecular forces, but, because
of these forces, they are generally well-ordered and easier to treat
than the molecules of a liquid or dense gas. The positions of the
molecules are fixed in a solid, instead of randomly distributed as
they are in liquids and gases. The orderliness of the solid state
allows simplification that makes possible an analysis of the average
properties of the system. The liquid state, which lies between these
two extremes, has been the most difficult to describe and to under-
stand. As a result, theories of liquids are often based on solidlike
or gaslike models.

The statistical-mechanical description of the solid or liquid
state is distinctly different from that of the gaseous state in one
essential point. The strong interactions among the molecules pre-
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clude a consideration of the dynamic behavior of each individual
molecule as was possible in the theory of gaseous state. In solids,
for example, we must consider the motions of the whole lattice and
analyze these gross motions statistically. In this chapter we discuss
the statistical-mechanical basis for such a description of the ther-
mostatic or equilibrium properties of solids and liquids.

STRUCTURE OF
10.1 SOLIDS

The structure of solids is often described in terms of a /attice,
or of a network, of points defining the average locations of the mole-
cules or atoms in a solid. The average distance between the neigh-
boring points — on the order of 1078 cm — is comparable with the
dimensions of the molecules themselves. Despite this compact-
ness, the lattice points can be arranged in many ways. Strictly
speaking, at thermal equilibrium, there exists one unique arrange-
ment of lattice points called the ideal crystalline state. The crystal
lattice is in general highly ordered, periodic, and regular, and it
possesses various forms of symmetry.

In actual situations most solids are seldom in the ideal crystal-
line state and, in particular, amorphous solids are characterized
by randomly distributed lattice points. From the thermodynamic
viewpoint, such solids are metastable and eventually crystallize.
The relaxation time, or time required for reaching the equilibrium
state, is so large in these cases that amorphous solids behave as
though they were stable for almost unlimited lengths of time.

Needless to say, the regular and symmetric nature of crystal
lattices presents ideal physical models for the study of the solid
state, and most of the discussion in this chapter is based on such
models. But we should bear in mind that most of the thermody-
namic relations for crystal lattices apply fairly well to amorphous
solids. One important difference is that, because noncrystal solids
are not in equilibrium, the fourth postulate of thermodynamics
(Sec. 1.4) does not apply, and their entropy assumes a nonzero
constant value as the temperature approaches zero. This residual
entropy, which characterizes the basic disorderliness in the struc-
ture of amorphous solids, must be added to the entropy expres-
sion for crystal lattices.

CLASSIFICATION OF
CRYSTALLINE STRUCTURES

The particles composing a crystal are arranged, as we have
observed, in a three-dimensional lattice. The lattice consists of a
set of identical adjacent units, each of which by a suitable transla-
tion could be brought into coincidence with any other. These units
are called basic cells. The configuration of these basic cells serves
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as the basis for classification of crystalline structures. According
to theory there are 230 possible configurations of atoms in crys-
talline patterns. However, these 230 possible patterns may be
grouped into 32 major categories, and these categories may be
further simplified into six basic crystal systems as represented in
Fig. 10.1.

Fig. 10.1 Basic crystal systems.
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The simplest of these crystal systems is the cubic, or isometric,
system, which has three axes of symmetry, all mutually perpen-
dicular with equal lengths. Although the cubic cell structure is
quite common in metals, the actual matrix seldom exhibits the
simple cubic cell structure shown in Fig. 10.1. Many metals are
formed with a grouping of 8 symmetrically spaced particles about
a single central particle. This is known as the body-centered cubic
cell and is shown in Fig. 10.2(b).

Another common cubic structure shown in Fig. 10.2 is the face-
centered cubic cell, in which each face consists of 4 corner particles
and a central particle, resulting in a total of 14 particles in the cell.
Perhaps the next most common crystal system, after the cubic
system and its variations, is the close-packed hexagonal system.
This hexagonal system consists of three axes of symmetry of equal
lengths lying in a single plane and a fourth axis of a different length,
perpendicular to the other three. In addition to the 12 corner
particles, other particles may be arranged in the structure to form
a close-packed hexagonal system as shown in Fig. 10.2(c).

About 70 percent of all elementary metals and alloys have either
the face-centered cubic (fcc), the body centered cubic (bcc), or

Fig. 10.2 Three common cell structures,
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the close packed hexagonal (cph) structure. The large particle
density and closeness in these structures is one reason for the
high density and strength of metals in comparison with most
nonmetallic solids. Table 10.1 lists the cell structures of some com-
mon metals.

TABLE 10.1 Cell Structure of Some
Common Metals

Metal Cell structure
Iron (delta) bee
Iron (gamma) fee
Iron (alpha) bce
Aluminum fce
Magnesium cph
Copper fcc
Zinc cph
Nickel fcc
Lead fcc
Silver fcc
Chromium bee
Tungsten bce
Indium bet®
Tin bet
Gold fcc
Manganese cubic”

“body-centered tetragonal
bsimple

CLASSIFICATION OF

CRYSTAL BINDING

The static forces binding atoms and molecules in solids are
almost entirely electrostatic in nature. Differences in the distribu-
tion of electrons around the atoms and molecules result in various
types of crystal binding. The four major types of crystal binding are

1. Covalent bonds, formed by the interlocking of the unfilled
outer electron shells of the atoms. These bonds are associated with
large binding energy, or the energy necessary to dissociate the
solid into separated atoms. Covalent crystals such as diamond
and quartz are very hard and have high heats of evaporation and
low electrical and thermal conductivity.

2. lonic bonds, representing the Coulombic attraction of the
positive and negative ions, which in turn result from the transfer of
one or more electrons from one atom to adjacent atoms in the
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crystal structure. A typical ionic crystal is sodium chloride, common
table salt.

3. Metallic bonds, representing the binding of an array of pos-
itive metallic ions in a uniform sea of negatively charged free elec-
trons. The binding energy of metallic bonds is generally less than
that of covalent or ionic bonds, because the attraction between
ions and free electrons is relatively small. Because free electrons
are available to participate in the conduction of electrical and
thermal energy, they are called conduction electrons, and metallic
crystals are characterized by high electrical and thermal con-
ductivity.

4. Molecular bonds are formed by weak van der Waals forces,
resulting, as we saw in Sec. 9.3, from induced dipole moments.
The electronic structure of the atom or molecule is left essentially
unchanged in the formation of molecular bonds. Such molecular
crystals as solid helium and nitrogen are characterized by weak
binding and thus have low melting and boiling points.

CRYSTAL AGGREGATES

AND DEFECTS

Crystalline solids may consist of one or more single crystals.
Most of the common materials of engineering interest are not
single crystals but large polycrystalline aggregates with crystals
bonded to one another along interfaces called grain boundaries.
The average crystal size in the aggregate affects not only mechani-
cal properties but, to a lesser degree, the transport properties —
mass diffusivity, electrical conductivity, and thermal conductivity —
as well. The effect of size on equilibrium thermodynamic proper-
ties, however, is comparatively small. In recent years, nearly
perfect single crystals of microscopic size have been developed
and have found significant applications in many electronic devices.
These perfect single crystals seldom exist in nature, and they
must be synthesized with extreme care.

Defects in crystals also exhibit certain effects on the physical
properties of crystalline solids. Their effects upon optical, elec-
trical, and thermal properties at low temperatures are particularly
pronounced. In fact, many important properties of solids are con-
trolled far more strongly by the nature of the defects than by the
nature of the host crystal, which may be only a vehicle for the de-
fects. Crystal defects may be classified as being either point or
line defects. Point defects only affect the region surrounding a
single particle site, whereas an entire series of particles are dis-
turbed by a line defect.

There are three specific types of point defect: vacancies, inter-
stitialities, and impurities. A vacancy represents the absence of a
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single atom or molecule from its expected location in the lattice.
Lattice vacancies are often known as Schottky defects. Interstitial
defects, which are also known as Frenkel defects, involve the
transfer of an atom from its normal lattice position to an interstitial
position. There always exist a certain number of lattice vacancies
and interstitial defects in a crystal at thermal equilibrium, because
the nonzero values of entropy at temperatures other than absolute
zero require some disorderliness in the structure. Furthermore,
the entropy is a monotonically increasing function of temperature,
so the number of these defects increases with the rise of temper-
ature. In the third type of point defect, impurity atoms may occupy
the lattice positions that are normally reserved for the constituent
atoms of the crystal, or they may lodge in interstitial positions.
In either case they disturb the electronic states of their neighbors
and affect the electrical behavior of the lattice.

Line defects include various kinds of dislocations. These may
exert a strong influence on the mechanical properties, but they
generally have little effect on the thermodynamic and transport
properties.

STATISTICAL
MECHANICS OF
10.2 LATTICE VIBRATIONS

EINSTEIN MODEL

Thermal energy in a solid may exist in a variety of forms that
correspond with various modes of motion in its fundamental
particles. The common modes of motion include the vibration of
lattice points around their equilibrium positions, internal vibration
and rotation within the molecules, and the translation of free elec-
trons. These modes, however, do not take place in all solids. For
instance, there exists little or no free-electron contribution in
nonmetals, and in monatomic crystals, such as occur in metals,
there is nointernal vibration or rotation. Furthermore, not all modes
of motion are significant at all temperature levels. The free-electron
contribution in metals, for instance, becomes appreciable as com-
pared to the contribution of lattice vibration only at very low tem-
peratures — below about 30°K. But, at room temperatures it is,
as we saw in Sec. 6.4, almost negligible. One particular mode of
motion, which always plays a significant role in the evaluation of
the thermal properties of.such solids, is the lattice vibration. The
statistical-mechanical description of lattice vibrations will be de-
veloped in this section.

The first analysis of the thermodynamics of lattice vibrations
was made by Einstein, who applied the Planck theory of quantized
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oscillators to the vibrations of a crystal. This analysis was described
in Sec. 4.3. We now wish to reconsider Einstein’s model from a
more basic statistical-mechanical viewpoint. This model is not
only a simple and useful approximation for crystalline solids, but
it is also closely related to certain models or “‘cell theories' of the
liquid state (Sec. 10.4),

In this highly idealized model, each molecule is assumed to be
confined to a ‘‘cell” bounded by its immediate neighbors. It vi-
brates in this cell, independently of the vibrations of its neighbors.
This idealization can not really be justified, because each atom
in a solid is strongly coupled to its neighbors through binding forces,
and any realistic model must be based on the vibration of the lattice
as a whole. Despite this basic shortcoming, the Einstein theory
gives a proper qualitative description of the thermodynamic be-
havior of crystalline solids and is worth pursuing.

We avoid the complications of internal molecular motion by
limiting our discussion here to monatomic solids. The potential-
energy function, ¢, which results in a linear harmonic oscillation
of the central atom in the ““cell,” is described by Eq. (7.40) and Fig,
7.1 or Fig. 5.1(b). For convenience of discussion here, the equilibrium
position £ of the central atom is taken as zero. Thus we have

6 = o0) + (5 ) (10.1)

where K = (d%¢ d£?):. o is related to the frequency of the oscillation

by
1 [K
- 27;\/5 (10.2)

as was indicated in the context of Eq. (5.10a). It is important to
recognize that the two constants ¢(0) and K depend not only on the
structure of the interacting particles but on the size of the cell V' N
as well. Furthermore, the motion of the central atom, described by
Eq. (10.1), is actually three-dimensional. Thus we should view ¢
as a polar coordinate that can be decomposed into a sum of three
independent, one-dimensional, linear, harmonic motions in the
X, ¥, and z directions,

EE=X2+}’2+Z:

and the potential-energy function ¢ is

B(E) = 6:(X) + 0, (¥) + ¢:(2) = 2 [«:5.‘-(0) + ( é—{)wz:’ (10.3)

W= 1z

Thus, according to the Einstein model, a crystalline solid of N
atoms is described as an aggregation of 3N independent, one-
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dimensional, harmonic oscillators, all vibrating at the same fre-
quency, ».

We can now establish the canonical partition function for the
Einstein solid. Using the canonical partition function for indepen-
dent particles, given by Eq. (8.30), we have

-
InQ = In le-—.\'o 0V /N 2.'\-?'(2 ge k:r')"\] (10.4)
i=0

where N¢(0, V/N) 2 represents the total potential energy of all
atoms at rest at their lattice points, and the factor of ! is introduced
to avoid counting each intermolecular interaction twice. The sum-
mation term in Eqg. (10.4) is the partition function Z for a one-dimen-
sional harmonic oscillator, as given in Eq. (5.31):

__exp(=0,2T) [ - (Q)}‘
2= exp(=0,1) ~ [ 250 |57

where the characteristic temperature of vibration ), = hv k de-
pends upon V N, and where we drop the subscript v on Z, since
the only contributions to Z are vibrational. The fundamental equa-
tion for the Einstein solid can be then expressed as

F(T, V, N) = —kTIn Q(T, V, N) = —KT In [~ Yo 043247 73]
(10.5)

The only uncertainty involved in the above fundamental equa-
tion (10.5) is the unknown functional dependence of ¢ and Z (or ©,)
on V, N. This dependence is complicated and varies from one kind
of solid to another because of the change in the form of the inter-
molecular potential function. For certain thermodynamic proper-
ties, such as the constant-volume specific heat, this unknown factor
does not cause any particular difficulty:

I 1CJ I Ll I (?‘.’«)2 _exp(9,/T) _ ( L4
&= aThy = Tora, = NT exp@,N-1 "\~
(10.6)

This is identical to Eq. (4.41), which we obtained directly, using
Planck's quantized-oscillator concept. The limiting values given
by Eq. (10.6) are

I!im c. = 3Nk (10.7)
and

_ 0,)\2 O,
?IJrr:J C, = 3Nk( T) exp( T) (10.8)

As we indicated in Sec. 4.3, the high-temperature limit agrees well
with experiments and with the law of Dulong and Petit, but the
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predicted value of c¢. approaches zero more rapidly in the low-
temperature limit than the measured values do. Experiments show
thatc, ~T3 when T,/0, « 1.

FUNDAMENTAL EQUATION
FOR LATTICE VIBRATIONS

The failure of the Einstein model to provide a good quantitative
description of experimental data in the low-temperature range is
largely the result of the assumption that the motion of each atom
is independent of the motions of its neighbors. Improvement can
only be achieved through an analysis of the vibration of the whole
lattice. The total number of modes of vibration in a crystal com-
posed of N atoms is equal, as we observed in Sec. 7.4, to half the
total number of internal vibrational degrees of freedom, 2(3N — 6),
or approximately 3N. Each mode of vibration is distinguishable from
the others, and in the harmonic-oscillator approximation (Fig. 7.1)
the various vibrational modes do not interact.! Therefore, each
vibrational mode can be regarded as an independent, distinguish-
able statistical element. It should be emphasized that these statis-
tical elements represent the normal vibrations of the whole lattice
— not just vibrations of the single atoms. The analysis cf these
independent elements, however, is almost identical to that of
independent particles.

The canonical partition function Q for 3N normal modes of
vibration is thus similar to Eq. (10.4),

. IN 3N
INQ = In | @ ¥¢ 0wy T IZ((_)?_’)—‘ _ _Ne(©, V'N) + 2 InZ(6,)
i=1 ) 2kT =1
(10.9)
where Z(®), ) is given by Eq. (5.31), .. = hy, k, and the »,'s are the

vibrational frequencies and are functions of V N. For convenience
of mathematical manipulations, we replace the summation over a
very large number (3N) of terms in Eq. (10.9) by an integral. This
can be accomplished by introducing a continuous frequency dis-
tribution g(») such that g(v) is the number of normal modes with
frequencies between » and v + dv. Since all separate v's are func-
tions of V' N, g(») is also a function of V N. Therefore, we have from
Egs. (10.9) and (5.31),

__Ne(O,V'N) | "[*Jf’__ kT J(V
InQ = KT t '/” KT In (e D lg a dv (10.10)
with the constraint
/ g(n, V N)dv = 3N (10.11)
Jo

ISee, for instance, T. L. Hill, Introduction to Statistical Thermodynamics, Addi-
son-Wesley Publishing Company, Inc., Reading, Mass. 1960, chap. §, p. 2.
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Based on the above equation, the fundamental equation for lattice
vibration is simply

F(T, V, N) = —kTIn Q(T, V, N) (8.25b)

from which all thermodynamic information can be obtained.

This fundamental equation is not limited to any particular
model and the only assumption invoked is that the vibrations are
small and harmonic, so that a normal coordinate analysis can be
carried out. Because of the large bonding forces in solids, the
harmonic-oscillation assumption is generally very good, and the
only major weakness is that it results in a zero thermal-expansion
coefficient, as we see later. The frequency-distribution function
g(v, V. N)is in general a very complex function of », and very little
is known as to the dependence of g on V N. Fortunately, a simple
approximation for g(v) suggested by Debye yields a surprisingly
good description of the thermodynamic behavior of solids.

DEBYE APPROXIMATION

The underlying reasoning behind the Debye approximation
is rather simple and physically plausible. The fact that the dis
crepancies between Einstein's prediction and experimental mea--
surements of ¢, lie in the low-temperature region suggests the
Debye correction. At low temperatures thermal excitations are
relatively small, and lattice vibrations will occur primarily at low
frequencies or long wavelengths. For wavelengths that are much
longer than the atomic spacing in the lattice, lattice vibrations
may actually be treated as elastic vibrations in a virtual continuum.
This acoustic type of model is then suggested by the fact that the
specific heats of both a photon gas (see Problem 6.14) and of a
solid at low temperature increase as T*. Accordingly, we are prompt-
ed to view a solid as though it were a phonon gas — a concept that
was discussed briefly inSec. 6.3.

For elastic vibrations it is known? that there are two different
velocities of propagation — ¢, for the longitudinal waves (or sound
waves) in which one mode of vibration exists for a given wave-
length in the direction of propagation, and ¢, for transverse waves
in which two modes of vibration exist for a given wavelength per-
pendicular to the direction of propagation:

1= o)i®

h‘p(i ) (10.12)
31— zq)l 2
2601 1 o) (10.13)

“See, for example, A. E. H. Love, A Treatise on Mathematical Theory of Elas-
ticity, Dover Publications, Inc., New York, 1944, pp. 297-302.
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where « is the volume compressibility, ¢ is Poisson's ratio, and p
is the density. In a three-dimensional solid, the distribution func-
tion of vibrational modes is given by the following expression:?

1 2)3_ 127V

Cf" + s e = —— 2 (10.14)

g(v) = 4rr1/(
where ¢ is defined through the last operation. If we recall from
chapter 6 that g(v) = dNy dr, then Eqg. (10.14) is three times the
result we would obtain from Eq. (4.22). The factor of 3 accounts for
the three modes of vibration.

The essence of the Debye approximation is to employ the
limiting low-frequency expression for g(v) as given in Eq. (10.14)
for all frequencies and to terminate at a maximum frequency
v, such that the total number of normal modes is 3N, as prescribed
by Eq. (10.11). This limiting frequency can be expressed in analyt-
ical form by writing

f g(v) dv ;f Vg - A
(1] 0 .
which gives
3N\ 1.
L (m) - (10.16)

The Debye frequency spectrum is thus

9Np2 0<v <,

g(”s Ik\:) = i"r:l:‘I (101?)
U V> Vm

where the dependence of g on V N is carried through v,. Figure
10.3 shows the frequency spectra of three-dimensional lattice
vibrations based on various types of approximations. It should
be understood that the *‘Einstein approximation’ refers to the
frequency of the independent normal modes and not the inde-
pendent particles that Einstein originally envisioned. The Debye
approximation, as shown by comparison with more realistic cal-
culations [Fig. 10.3(c) and (d)], is indeed a reasonable approxima-
tion for the two limiting-frequency regions: the low-frequency or
large-wavelength region and the high-frequency cutoff region.

The fundamental equation for a Debye solid is obtained by
combining Egs. (10.10), (8.25b), and (10.17) to obtain

V T \3 an/r N
F(T, V,N) = { N¢ (0. - ) 4 BNKT(--—) vIin(l— e ) du
N (')I) 0

(10.18)
iSee, for example, T. L. Hill, Reference 1, App. 6.
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Fig. 10.3 Frequency spectra of three-dimensional lattice vibrations.
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where the Debye temperature 0y, is defined in terms of »,:

Gp = hv (10.19)
k

and is a function of V/N. Table 10.2 gives average values of ¢, for
a few common substances based on various experimental investi-
gations.* The integral in Eq. (10.18) can only be evaluated numer-
ically. In principle, if the explicit expressions for ¢(0, V N) and
G),(V N) are known for a particular solid, Eqg. (10.18) contains all the
thermodynamic information for that solid. For certain thermody-
namics properties, this unknown dependence on V' N does not
cause any real concern. One such property is the constant-volume
specific heat, which can be obtained as

PF TV [T uer
= a1 - Kl — . I
¢ T(aT:):',,\' an ((')n) _/u (e“ — 1)3 ol

Op) __ 30p0/T
' 390[40( T) exp (Op T) — 1] (0:20)

4C. Kittel, Introduction to Solid State Physics, 3rd ed., John Wiley & Sons, Inc.,
New York, 1967, p. 180.
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TABLE 10.2 Representative Values of Debye Temperature

Substance Gp, °K Substance ), °K Substance 5, °K
Be 1160 Fe 467 Al 418
Mg 406 Co 445 In 109
Ca (219) Ni 456 TI 89
La 132 Pd 275 C (diamond) (2000)
Ti 278 Pt 229 Si 658
Zr 270 Cu 339 Ge 366
v 273 Ag 225 Sn (gray) 212
Nb 252 Au 165 Sn (white) 189
Ta 231 Zn 308 Pb 94.5
Cr 402 Cd 300 Bi 117
Mo

425 Hg

(60-90) W (379)

The quantity D is the Debye function D(®;, T) and is defined as

rent
{")I) o T 3 U3

Numerical values of D are given in Table 10.3. As T — = or ((p/T)
— 0, the integrand of D can be expanded to show that D(0) -1
and c¢,— 3Nk, the correct high-temperature limit. As T-—0 or
(&p/T)— =, the definite integral in D with the upper limit now
equal to infinity can be evaluated to give
4t [ T3

o= 3Nk — | — 10.22
¢ 3 ) ({‘}n) ( )
The above result, generally known as the T3 law, is the most im-
portant result of the Debye theory. It is accurate to within 1 percent
of experimental measurements, or better, for T, &), < 4.

TABLE 10.3 Debye Function D

Hn"T D
0 1
0.1 0.9630
0.2 0.9270
0.5 0.8250
1 0.6744
2 0.4411
3 0.2836
4 0.1817
5 0.1176
10 0.0193
20 0.0024
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We should remember that for metals at very low temperatures,
the specific heat of the free electrons becomes appreciable, as we
indicated in Sec. 6.4,

¢, | r—woex = AT + BT? (6.49)

and its contribution AT must be considered in addition to the
lattice vibration contribution BT3.

EXAMPLE 10.1 Determine the constant-area specific heat for a
two-dimensional Einstein solid and for a two-dimensional Debye
solid.
(a) Einstein solid. We begin by writing the partition function for
a two-dimensional harmonic oscillator with constant »:
exp (—hv/2kT)

2
2=227,=2*= ['1"_ EE(ZFL_RT)}

but

,dInZ . 2Nh
U= NET a1 = N o (o kT — 1

SO
al

hv\? hy B hv
LT e 2Nk<kT) [1 ~ exp (—;r)] exp (—;rf)
As hv kT approaches zero this gives ¢, — 2R?, which is what we
would expect from the classical equipartition theory. As hv kT
approaches infinity this result gives ¢, — 0, as it must, to satisfy
the fourth postulate (or the third law) of thermodynamics.

(b) Debye solid. We must now consider a spectrum of phonon
frequencies from zero to a maximum »,, such that the number of
vibrations is consistent with the total number of modes of energy
storage in the solid 2N. Thus

N - f ™ g(v) dv
]

To integrate this we need g(»). This can be obtained in the usual

way,
x 2Ly 2Ly
dNo — d[Z(E Lo )] - g0v) dv

SO
Ym v
2N = [ 47A = dv
Jo c

where A is the area, equal to L2. Integrating this we obtain

Ne:
TA

Vi =
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To get the specific heat, we must integrate the Einstein ex-
pression for the energy of a single oscillator over all modes instead
of just multiplying it by 2N. Thus

_— f " (hv KT)? exp (—hv kT)
0

[A%= _é;ia-(:hv kD)2 g(v) dv

Introducing x = hv/ kT, we can transform this to

o _ 4Nk f Xt
ox2 o (1— e

In the high-temperature limit (x, — 0), ¢, approaches 2R?, as we
should expect, and as x, approaches infinity, ¢, approaches zero.
It can also be shown that at low temperatures ¢, varies as T2 for a
two-dimensional Debye solid. This is analogous to Egs. (10.22) for
the three-dimensional case.

EQUATION OF
10.3 STATE OF SOLIDS
The Helmholtz-function form of the fundamental equation
given in Eq. (8.25b) yields one equation of state of the form

dF
S - _(ﬂT)x',.\' ~ S(T. V, N)

Thisis often absorbed in
S
Co= T(é_?')v,.»- =cT, V., N)
which is sometimes called the ‘‘thermal equation of state.” In the
Debye model of solids, the latter is given by Eq. (10.20).
What we commonly call the “‘equation of state’ is the me-
chanical equation of state,
)
- _(LF, — (T, V,N) (10.23)
aV/r.n
It is this equation and the related quantities that we wish to in-
vestigate next.

DEBYE EQUATION OF STATE
The Helmholtz function can be written as

F= UV, N) + Fi(T, V, N) (10.24)

where U is the value of F (or U — TS) at 0°K and equals the total
potential energy of all atoms in the lattice when the atoms are
located at their equilibrium positions; F, is the lattice-vibration
contribution. Free-electron and other contributions are neglected
here. For convenience we restrict our discussion to the Debye
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theory, and the two contributions Uy and Fj, can be readily identi-
fied by comparing Egs. (10.18) and (10.24).
Now, defining a function f(®p/T) such that

Fo(T, V,N) = Tf(%f)) (10.25)

we obtain

JFp df
(6(.;)D)'r Cd(Op/T) (10.26)

The total derivative of f can be cast in a more convenient form by
taking V, N, and consequently ©,, as constant, so

df 1 Jd Fp ~Up
d(On/T) (7)1:[3(1,-' nT ]m- G (L),

where the partial derivative, by definition, gives an internal energy
Up, which is the internal energy of lattice vibrations in a Debye
solid.

The pressure of a Debye solid is then given by Eq. (10.23) as

dlp dFp  dUp  dFp d0p
P="%8v ™~ av ™~ "oV~ 80p av (10.28)
or, with the help of Egs. (10.26) and (10.27),
_ _9U 90pUp
1Y av Gp 0.2)
If we define a quantity called the Griineisen constant v,
_ dln0Op
3NV (10.30)
we have, from Eq. (10.29), the Debye equation of state,
_9Uo  vUp (10.31)

P=""%3v " v

which is a rather simple equation relating pressure to internal
energy and volume. Moreover, it bears a remarkable resemblance
to the ideal-gas equation of state, if U, is taken to be zero. For
example, ©), is given for an ideal gas as h?/8mkV2? in Sec. 5.3. It
follows that v 1s equal to § and

(2.31b)

_NkT _3U
2V

GRUNEISEN RELATION:
An analytical determination of the Griineisen constant v isnot
very fruitful because we cannot make a quantitative prediction

*E. Griineisen, ““Zustand des Festen Karpers," Handbuch der Physik, ed. H.
Geiger and K. Scheel, Springer Verlag, Berlin 1926, vol. 10 (“‘Thermische
Eigenschaften den Stoff'’), pp. 1-59.
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of the explicit dependence of &, on V. Although Egs. (10.14), (10.16),
and (10.19) do give the relationship between O, and elastic proper-
ties of solids, it is not clear how the elastic properties, such as
volume compressibility and Poisson's ratio, depend on volume.
Thus v generally has to be determined experimentally from mea-
surements of related macroscopic properties. We derive here a
simple relation that relates y to other thermodynamic properties.

Differentiating Eqg. (10.31) and assuming that v is independent
of T gives

ap\ G
(aT)y = (10.32)
In terms of the linear coefficient of thermal expansion 3 which is
equal to one third of the volume-expansion coefficient, we have

S (o) e (VS oo
F=3y (ar),, T3V (ar)y apJr  3\aT/)s (10.33)
where « is the volume compressibility. Combining Eq. (10.32) and
(10.33) yields the so-called Griineisen relation
_ K
B = 3V (10.34)
Grlineisen showed by examining experimental data that vy
remains constantin many metals over a wide range of temperature
and density. Some values of v, calculated by Griineisen with the
help of Eq. (10.34), are given in Table 10.4.

TABLE 10.4 Some Values of the
Grineisen constant, «

Substance v = 3VB/kc,

Na 1.25
K 1.34
Al 2.17
Mn 2.42
Fe 1.60
Co 1.87
Ni 1.88
Cu 1.9
Ag 2.40
Pt 2.54
NaCl 1.63
KF 1.45
KCl 1.60
KBr 1.68

KI 1.63
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THERMAL-EXPANSION

COEFFICIENT

We now consider the thermal-expansion coefficient from a
microscopic viewpoint. This is particularly relevant here, because
the harmonic (small-vibration) approximation used for the analysis
of lattice vibrations gives a zero thermal-expansion coefficient, as
is shown later. The thermal expansion of solids results from an
increase in the average amplitude of atomic vibrations at the lattice
points when the thermal energy increases. Let us therefore con-
sider the potential energy ¢ of the vibrating atoms at a displace-
ment £. If we proceed as we did in the context of Eq. (7.39) we can
write

1 d¢) ., 1d%
#(&) = 2 d—EzL, ¢E—¢&y 3 de'k,
where an additional anharmonic term is included for consideration
and where the coefficients depend on V/N.

The anharmonic term is crucial to the phenomenon of thermal
expansion. As the temperature is raised and vibration increases,
it is the asymmetry of the potential function, as reflected in this
term, that causes the average atomic displacement from equilib-
rium to be positive. By the definition of an average,

- &) (10.35)

f (E—L)exp(—¢/kT)d(t — &)
e = —_— (10.36)

el

— & =
/ exp (—¢/kT)d(E — &)

where the kinetic-energy contribution in the Boltzmann distribu-
tion function is not included, because it does not depend on ¢.

The anharmonicity effect can be obtained by substituting Eq.
(10.35) into (10.36) and performing the integrations. The result for
small displacements and correspondingly low anharmonic energies
is obtained after making appropriate expansions and order-of-
magnitude simplifications (the details of which are left as an ex-
ercise in Problem 10.8):

1 dx‘b'

3! dgs
— &= .1 ) . (constant) T (10.37)

4 (1 d¢| \?
2! del,

Thus the average increase of the spacing of molecules is directly
proportional to the first anharmonic coefficient, (d%¢ d&): 3!
It also depends upon higher-order anharmonic coefficients —
(d°¢/d&%), 5!, and so on—if they are carried, but none of the
harmonic terms contributes.

aadl
.
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The common formula for the linear thermal expansion of
solids,

length = length.[1 + B(T — T.0)] (10.38)

is consistent with Eq. (10.37). They are, in fact, identical if T, is
taken to be absolute zero and ¢/¢. is identified as length,/(length at
T = 0). Thus the coefficient of thermal expansion 3 is approx-
imately (é — &)/ T divided by &, which in turn is ~ (V/N)!3, Thus

_K(NY? (@) / (dey:
B 4(\’) (d?)s,/(déz)& (10.39)

EXAMPLE 10.2 Express (3 for the Lennard-Jones potential,
¢ = 4el(a/8)'? — (0/8)].

Differentiating, and noting that £, = 2!/65 for the Lennard-Jones
potential, we obtain

d?¢)| (12-131 6-7 1)
| = 8e

g, = 22 22 T 21502 2
and
a’g| =%(j?344149l8g
dagl;, 111263 22 211243 2
Thus

E VL, @9 ok
(E.- l)T S hs 9% (N/ V)3 e

so 3 should vary directly as the relative size of the particles with
respect to the lattice and inversely with the *‘critical temperature”
T* = ¢ k.

LATTICE THEORIES
OF LIQUIDS

There are several general approaches in the study of the liquid
state. The virial-expansion approach, which was used in chapter 9
to describe moderately dense gases, is quite general and exact,
but problems associated with the convergence of the virial ex-
pansions and the complex numerical evaluation of many virial
coefficients severely limit the utility of this approach. In practice,
virial expansions can be applied only to dilute or moderately dense
gases. The most significant advances in the statistical-mechanical
description of the liquid state have been along two other avenues:
the distribution-function approach and the lattice-theory approach.

In the fundamental sense, the former approach is more rigor-
ous than the latter. The approximate lattice theories of liquids,



10.4 Lattice Theories of Liquids 297

CELL THEORIES

although semiempirical in nature, are attractive in the simplicity
of their physical models and in their strong analogy to the solid-
state theory. In view of this analogy, the lattice theories should
generally be appropriate for liquids at high pressure and density.
After the preceding descriptions of the solid state, itis only natural
to proceed to the lattice theories of liquids. A brief description of
the distribution-function approach to the theory of liquids, how-
ever, is given at the end.

In a cell theory of liquids, the volume V occupied by the N
molecules is divided into a lattice of N cells, each of volume v =
V' N and each occupied by one molecule. The cell volume is some-
times called the free volume, or the volume free for a single mole-
cule, and cell theories are often referred to as free-volume theories.
The motion of each molecule within its cell and in the potential
field of its neighbors is assumed to be independent of the motion
of the other molecules.

Up to this point, the cell model of liquids is indeed identical to
the Einstein model of solids. However, there are a number of basic
differences. The molecule in a liquid is not as strongly influenced
by its neighbors as that in a solid, so its motion is not restricted in
aregion near an equilibrium position of minimum potential energy.
Thus the potential field experienced by the molecule in a liquid is
not necessarily the near-parabolic one, which resuits in an almost
harmonic oscillation, as is the case in solids. Moreover, we do not
usually have to consider the quantum-mechanical description of
the vibrations, as we did for solids, because the temperature level
of the liquid state is usually not very low.®

Perhaps the most profound difference is the introduction of
the “‘communal-entropy’’ concept in the cell model of liquids. The
“‘communal entropy,” which is absent in a crystal but presentin a
gas, is added to compensate for the decrease in entropy due to the
ordered confinement of each molecule in a cellin the regular lattice.
This concept can be made clearer through the following example.

Consider a monatomic ideal gas of N molecules in a volume V.
Using Eq. (9.7), we can note that Z,,, = 1 and Z, = V¥, and obtain

A ve
F=—kTInQ = —kTIn (Nl_\-‘-\') = —NkTIn ( -\—1) (10.40)

For the cell model in which N molecules are equally distributed
in N cells of volume v, the factor kT In (1, N') must be added to Eq.

®Ligquid helium is a definite exception which displays a variety of quantum
peculiarities.
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(10.40) to account for the distinguishability of particles by virtue of
their locations. Moreover, with no intermolecular forces, the con-
figuration integral Z., becomes vV in the cell model. Thus

F - —NkTIn ({3) (10.40a)

This indicates that when we arbitrarily divide the system into cells,
the free energy F of the system increases by NkT, and the entropy
(S = —dF, dT) decreases by Nk. It therefore appears necessary to
add a certain amount of “‘communal entropy’’ to the entropy ob-
tained from a cell model. One of the difficult problems in cell
theories of liquids is that of determining how much “‘communal
entropy" should be added. For convenience of the present dis-
cussion, we take the value of the **communal entropy’’ to be AS =
Nk, as suggested by the preceding example.

Now let us consider the effect of the intermolecular potential
between a given molecule and all other neighboring molecules in
the cell-model formulation. We realize that the potential energy
becomes very large when the confined molecule approaches its
neighbors near the edges of its cell. Consequently, the probability
of having the confined molecule in a given element of volume is no
longer uniform throughout the cell butis proportional to the Boltz-
mann factor, exp | —[&(r) — ¢(0)]/kT}. The *‘effective’” free volume
vr through which the confined molecule can move, is thus

v = f f f exp [—‘?—(-r-)- ;-T-“’(q)] dr (10.41)

where the integration is carried out over the whole cell space. The
effective free volume must clearly be less than the cell volume
(V/N), and both ¢(r) and ¢(0) are functions of V N; thus we can
write v/(T, v) and ¢(0, v). Substituting Eq. (10.41) into (10.40a) and
adding the ‘‘communal-entropy’” contribution, we arrive at the
following fundamental equation:

F = —NKTIn [”’({’3 “’)e] ‘ {v_qs(zu, 2 (10.42)
Now the problem is simply to obtain appropriate forms of v/(T, v)

and ¢(0, v).

One of the simplest fundamental equations for the liquid state
is for the van der Waals liquid. It can be readily shown that to ob-
tain the van der Waals equation, Eq. (9.27), we must have

YW =v—>b 0, v) = —2-5 (10.43)

where a and b are constants related to intermolecular potential
parameters by, for example, Egs. (9.21) and Eq. (9.25).
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The basic pratotype for all cell theories of liquids is originally
due to Lennard-Jones and Devonshire.” In the LJD model, as it is
called, each molecule moves within its cell in the resultant potential
field of its immediate neighbors, which are assumed to be fixed at
the centers of their respective cells. The resultant potential field
¢(r) is obtained approximately as a spherically symmetric function
on the basis of the Lennard-Jones intermolecular potential. The
fundamental equation can then be determined from Egs. (10.41)
and (10.42). More refined calculations have been made for such a
model and the results for pv/kT are shown in Table 10.5.% Here,
pv/kT, which is akin to the compressibility factor, is expressed as
a function of the reduced variables T* and v*, given in Eq. (9.68).
Similar tables for the various thermodynamic functions are also
available. As we might expect, these calculations agree well with
measurements at high pressures and densities.

TABLE 10.5 Function pv/kT = f(T*, v*) Based on the LJD Theory

Reduced Reduced volume, v* = v/o?
temperature

T* = kT/e 1.131 1.414 2.121 3.536 4.243
0.80 —1.442 —2.413 —0.885 —0.0661 0.0990
1.00 0.1881 —0.8515 —0.0547 0.3985 0.4897
1.30 1.6128 0.5151 0.6933 0.8230 0.8340
1.60 2.4417 1.3168 1.1453 1.084 1.030
2.50 3.570 2.460 1.806 1.471 1.266
5.00 4,253 3.185 2.291 1.700 1.311

400.00 2.543 2.082 1.296 1.026 1.007

OTHER APPROXIMATE

LATTICE THEORIES

A number of attempts have been made to improve the cell
theories. One kind of modification allows not just one molecule,
but0, 1, 2,--- molecules in a cell. Such theories are generally called
“hole theories,” because they allow the existence of an empty
cell or a “*hole.” Unfortunately, these refinements do not provide
much improvement over the LJD theory. Another variation of these
treatments is the theory of significant structures,” in which the

7). E. Lennard-Jones and A. F. Devonshire, Proc. Roy. Soc. (London) Al163, 53
(1937); Al165, 1 (1938).

8J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and
Liquids, John Wiley & Sons, Inc., New York, 1964, pp. 1122-1125.

“H, Eyring and collaborators, Proc. Natl. Acad. Sci. U.S. 44, 683 (1958); 45, 1594
(1959); 46 333, 336, 639 (1960); 47, 526 (1961); 48, 501 (1962).
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MORE EXACT
CALCULATIONS

Reduced

temperature

T* = kT /e

0.833
1.000
1.250
1.677
2.500
5.000

liquid is regarded as a mixture of crystallike and gaslike regions.
The physical and theoretical basis of this theory is not entirely
clear; however, it has led to rather successful semiempirical equa-
tions of state for a variety of liquids. Other extended cell theories
include the “tunnel” model'® and the ‘“‘worm’’ model,!! which
have found some success in rationalizing experimental data.

All these lattice theories of liquids are semiempirical in nature
and are to be viewed as successful only if they agree with experi-
mental results. The fundamental basis of these theories is usually
not strong.

The distribution-function approach is more rigorous, but it
incurs formidable mathematical complexity. The starting point
is to define the radial distribution function g(r) which characterizes,
on the average, the number of molecules in an infinitesimal ele-
ment of volume at a distance r from a particular molecule. It is
theoretically possible to set up an equation for g(r), and the ther-
modynamic properties of the liquid can be expressed in terms of it.
In practice, one must make approximations before he can solve
the equation for g(r). It is possible to obtain g(r) directly from x-ray
diffraction experiments. It can also be evaluated on the basis of the
Lennard-Jones potential, and resulting values of pv kT, similar to
those given bythe LJD theory, are given in Table 10.6.">

TABLE 10.6 Function pv kT = f(T*, v*) Based on the Radial Distribution
Function Theory

Reduced volume, v* = v/g3

1.222 1.483 2.260 3.632 13.82

—2.829 —2.433 —1.445 —0.594

—1.382 —1.268 —0.734 —0.156 0.629
0.052 —0.115 —0.038 0.264 0.768
1.467 1.018 0.649 0.670 0.883
2.856 2.139 1.326 1.064
4,223 3.242 1.998 1.456

5.567 4.333 2.667 1.833 1.167

10J. A. Barker, Proc. Roy. Soc. (London) A259, 442 (1961); J. Chem. Phys. 31,
631 (1962).

I"H. 8. Chung and J. S. Dahler, J. Chem. Phys. 40, 2868 (1964); 42, 2374 (1965).
12J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Reference 8.
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For a relatively small number of particles, it is also possible
to perform an exact numerical calculation of liquid properties with
high-speed computers. The numerical techniques employed in
these calculations are the Monte Carlo method'* and the molecular-
dynamics method, in which the detailed molecular trajectories are
computed.'#

EXAMPLE 10.3 Calculate the specific volume of liquid nitrogen at
its normal boiling point (77.2°K) (a) by assuming it to be a van der
Waals liquid, and (b) using the LJD hole theory.

In both of these computations we can compare the results with
the observed value of 0.811 cm? g.

(a) The van der Waals equation [Eq. (9.34)] for T, = 77.2 126.2,
or 0.611, where T, = 126.2°K, and p, = 1/33.5 = 0.02983, where
p. = 33.5atm,is

4.38 3
The solution, by trial and error, is v, = 0.437, but v, = 3.22 cm? g,
sov = 0.437 x 3.22 = 1.409cm? g, which is high by 74 percent.
(b) We now must use values of f(T#, v*) given in Table 10.5.
By definition,

V= ka f(T*, v¥) = 1.05 X 10720 cm?® molecule- f(T*, v¥)

or, using v* = v o3, where Table 9.2 gives & = 3.70 A as the Lennard-
Jones radius for nitrogen molecules,

* _1.'0'_5_>_<.__1_g_:.” E':rl‘ kY * K

vt = (.70 X 10 %) cm? f(T*, v¥) = 208-f(T*, v¥)
and T* is 77.2°K (e k), where Table 9.2 gives T.* = ¢ k = 95.1°K
for water. Thus T* = 0.812. By interpolating a table similar to 10.5,
we can obtain £(0.812, v*) values. The value of v* for which £(0.812,v*)

is equal to v* 208 is 1.07. Thus

v = [1.07 % (3.70)* x 10 %% cm*® molecule]
% (6.02 x 1023,28) molecules/g|

or
v=117cmi g

which is high by only 44 percent.

W, W. Wood, F. R. Parker, and J. D. Jacobson, J. Chem. Phys. 21, 720, 1207
(1957); Z. W. Salsburg, J. Chem. Phys. 37, 798 (1962).
14B. J. Alder and T. E. Wainwright, J. Chem. Phys. 33, 1439 (1960), 40, 2724 (1964).
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Problems 10.1 Write down all the steps in Sec. 10.2 leading to Egs. (10.6),
(10.7), and (10.8).

10.2 Some of the thermal energy of a gas will consist of sound
waves having a wavelength longer than the mean free path, L.
Determine the total energy of a monatomic gas with such waves.

10.3 Derive an equation for the vapor pressure po(T) of an
Einstein crystal, assuming that the vapor is an ideal gas and noting
that p.,,s mustequal u,,,.. in equilibrium.

10.4 Complete all the steps leading to Eq. (10.22).

10.5 Derive the fundamental equation for two-dimensional
Debye solids. (Recall Example 4.1 and Problem 4.6.)

10.6 Determine the relative dispersion of energy fluctuations
[recall Eq. (8.53a) and context] in a Debye solid at the high- and
low-temperature limits, respectively.

10.7 The total blackbody radiation energy of a dielectric solid
with a frequency-independent refractive index n is n? times the
value in hohlraum at the same temperature. Obtain expressions
for pressure and ¢, in a Debye solid of this kind, including both
radiation and the lattice-vibration contribution. Compare the order
of magnitude of these contributions when the temperature is 300°K.

10.8 Verify Eq. (10.37).

10.9 Express the Joule-Thompson coefficient for liquids obey-
ing the cell model, in terms of the functions v/(T, v) and ¢(0, v).

10.10 Determine the speed of sound in a liquid obeying the cell
model.

10.11 Determine the coefficient of thermal expansion of a
liquid that obeys the cell model.

10.12 Obtain the fundamental equation of a two-dimensional
liquid, based on the cell model.

10.13 What is c, for a van der Waals liquid? Can you explain this
rather odd result?
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elementary kinetic theory
of transport processes

11.1  INTRODUCTION

The methods of statistical mechanics have proved to be a
powerful tool for treating equilibrium behavior. Now we wish to
enlarge upon our capability for deducing the macroscopic behavior
of gaseous! groups of microscopic particles. We wish to develop
predictions for such nonequilibrium systems as shear flows and
thermally conducting gases.

Kinetic theory provides the means by which we can do this. Its
methods are generally less abstract and more explicit than those of
statistical mechanics, but they are also more complicated in that
they take closer account of what is happening to particles. In par-
ticular, kinetic theory focuses upon collisions and the way in which
they change the distribution function f(c, r, ).

The reason that we have been permitted to ignore the fre-

ITransport in liquids is considerably more complicated. See, for example,
J. Frenkel, Kinetic Theory of Liquids, Dover Publications, Inc., New York, 1955;
or J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases
and Liquids, John Wiley & Sons, Inc., New York, 1954, chap. 9.
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MEAN

quency of collisions is that it has nothing to do with the equilibrium
state. Collisions provide the means by which a system changes its
state. But once an equilibrium state has been achieved in a system,
we can learn all that we need to know by considering the system
during a single instant in which almost no collisions occur.

Suppose, for example, that a wall, maintained at a constant
high temperature, is separated from a low-temperature gas by an
adiabatic partition. When the partition is removed, cold molecules
strike the wall. They are excited by the high-temperature molecules
comprising the wall, and leave with a higher average energy. In
each subsequent collision the hotter molecules will, on the average,
share their greater energies of translation, rotation, and so on, with
the cooler molecules.

The conduction of heat in gases is the gross effect of this
process. Energy is transported from one position to the next by
collisions. If a cold wall were held at constant temperature some
distance from the hot wall, the macroscopic system would even-
tually become steady. Although we might observe, in a gross way,
that the system has reached steady state, it should be clear that the
gas is in a nonequilibrium state. The system is causing entropy to
be generated in its surroundings even though its macroscopic
properties are not changing. More specifically, although the dis-
tribution function f(c, x) is time-independent, it is still position-
dependent, and thus it does not describe an equilibrium gas.

The derivation of the energy distribution function in chapter 3
was an elementary example of the way in which the methods of
statistical mechanics lead to a description of equilibrium behavior.
No consideration at all was given to the mechanics of collision, and
the kinetic hypothesis was not expanded beyond the minimal state-
ment given at the end of Sec. 2.1.

Secs. 11.2 and 11.3 use the methods of kinetic theory in an ele-
mentary description of the processes of heat, momentum, and
mass diffusion. The description centers on the mechanics of
collision and it does not use the equilibrium assumption of maxi-
mum probability. It employs an expanded form of the kinetic hy-
pothesis as stated in Sec. 2.1, and it deals with gases that are classi-
cal in the sense that they are neither relativistic nor subject to
quantum limitations.

REL PATH

To describe any process that depends upon molecular colli-
sions, we must first characterize the frequency with which particles
collide. This is generally done by giving the average distance that
particles travel between collisions — the ‘““mean free path,” /. Al-
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though a more precise derivation is delayed until chapter 12, itis
possible to show the essential features of the mean free path in a
simple approximate derivation.

The kinetic hypothesis must be expanded to include an ideal-
ization of molecular size. The molecules are considered as spheri-
cal and of diameter o. If 7 is large, collisions are frequent, and, as o
is shrunk to zero, collisions become impossible.2

If all but one of the molecules are considered to be stationary,
and that one molecule is considered to move at the average speed
c of the molecules in the gas, then it collides with particles within a
volume swept through at the rate of (= 4)(¢ + ¢)’ccm? sec. But this
space contains n molecules cm?®. Accordingly, the frequency of
collisions is

frequency = (mo2c)(n) collisions per second
and the mean free path /is

_ velocity _ 1 (11.1)
frequency nwo?
The mean free path of ideal-gas molecules is thus inversely propor-
tional to the density, » = mn, and the cross-sectional area of the
molecules.

Two kinds of approximation have been made in developing Eq.
(11.1). When the other molecules are in motion, the likelihood of
collision isimproved, Conversely, a slow-moving molecule generally
has a shorter free path than a fast molecule. We discover, later,
that when the velocity of the other particles is considered, / is re-
duced by a factor of 1.051 2.

The second approximation lies in the use of a constant molec-
ular diameter. A collision occurs when one molecule (or other
particle) moves into the local force field of another molecule — not
when one hard sphere bumps into another hard sphere. In an
actual collision, the effective diameter of the molecule is less when
the relative velocity between particles is high, because forces at a
distance have less time to act. This effect becomes especially im-
portant when very high energy particles move through a medium.
For example, high-energy neutrons in a nuclear reactor must be
slowed down (or ‘‘moderated’’) before they have a large enough
‘“‘collision cross section' to hit other particles and continue the
fission process.

Finally, it is instructive to compare the mean free path with the

-The interesting corollary to this is the fact that changes in state — which
result from collisions — become increasingly slow in very dilute gases.
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average spacing ly between molecules. The latter is equal to n—!13,
Thus we obtain from Eq. (11.1),

I 1051 [/)\?
— == (—‘?) (11.2)
ly \2;; a
from which we learn that /is a great deal larger than /,. For molecu-
lar hydrogen at atmospheric pressure and 0°C, n is 2.7 x 10!°

particles,cm?, and ¢ is about 2.7 x 10 ¢ cm. Then / is found to be
1.15 X 10~ cm and Eq. (11.1) gives /o = 3 X 10-7 cm, or 4 /.

EXAMPLE 11.1 Consider an electron moving in a gas whose mole-
cules have a diameter o. It can be assumed to have negligible size
and a far greater speed than the molecules do. What will its mean
free path [, be?

In this case the assumption used in the derivation of Eq. (11.1)
is satisfied with good accuracy; the molecules are essentially sta-
tionary with respect to the electron. Thus we need only to use the
correct collision cross section in Eq. (11.1). This would be (= 4)
(Guolecuies + 0)? instead of (r 4)(a + o). Thus

4

rrﬂ(cr_-..u:' |'I||l'.“):

and, unlike Eq. (11.1), this result is quite accurate.

EXAMPLE 11.2 Obtain the distribution function for the individual
free paths, whose length is designated by &.

Let ’(¢) be the probability that a molecule has a free path of at
least ¢, If a particle has already traveled a distance ¢, then the likeli-
hood of its going a little bit (d¢) further without collision is d¢//. Thus

(€ + db) = @(¥)
but we also can write

bl
O + o) = 00 + 5 ot

Comparing these expressions, we obtain

dy &

di 1

Integrating this expression and noting that #(¢ = 0) = 1, we get

V() = exp (?)
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Thus the probability that a molecule has a free path less than ¢ is
1— exp(—£/10), and, in accordance with Eq. (2.14), the normalized
distribution function for ¢ is

dil —exp(=&D] _exp (=&
dt N /

This result is sketched in Fig. 11.1.
The fraction of free paths between 0 and £ can be expressed as

§
[ Fod =1 e (%)
0 !

and this result is also plotted in Fig. 11.1.

F@ =

Ifee

RELATION
BETWEEN MEAN
FRILE PATH AND
TRANSPORT

1.3 PROPERTILES

Once the mean free path and the number density are known,
we can estimate the coefficients of momentum, heat, and mass
transport® resulting from a known gradient of velocity, tempera-

Fig. 11.1 Distribution of free paths.

1.00
= CF(E)
U 0.75
E o Fraction of paths
s 5 between 0 and €
-
£z
25,050 —
Z =
£ &
w ©
E Eo0a25}
0 | l I [ 1
0 1 2 3

Dimensionless free path £/¢

‘That is, the transport properties: viscosity, thermal conductivity, and mass
diffusivity.
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ture, or concentration. Figure 11.2, for example, shows a particle
moving past a reference plane, y = y,, in a fluid with a velocity
gradient, du dy, where u is the x component of the gross velocity cy.
The average particle that crosses the plane y = y will travel a dis-
tance of a little more than one mean free path — say 2o/ — where «
is a constant that is approximately equal to unity.

FACTORS INFLUENCING THE
PENETRATION OF MOLECULAR
TRANSPORT

Why, one might ask, should « exceed !? There are several differ-
ent effects that bear upon this value. The depth of penetration of
molecules is of great importance in the estimation of transport
properties, so a qualitative explanation of these effects is in order.

Suppose, by way of explanation of the first contribution to «,
that a line were to be drawn across the floor and a handful of straws
cut to various lengths were strewn about the line. The average
straw touching the line would be longer than the average straw in
the original handful because the longer straws would have a greater
chance of touching the line.

Although the free paths of molecules are distributed in three
dimensions, the principle is the same. We can estimate how much
longer than / the free paths are in the following way. The presence
of certain molecules at y = y, is an accomplished fact. In the same
way that a coin that has been tossed ‘‘heads’ nine times in succes-
sion still has a 50 percent chance of coming out “*heads'’ in the next
toss, these particles have a full mean free path of / ahead of them.
And by symmetry we expect that they have a full mean free path

Fig. 11.2 Motion of a particle in a velocity gradient.

YA Y A

) average plane ul\ which a particle crossing| v =y,
y, + af =1 _

suffers its next\ collision

average plane at which a particle

y,-af

suffers its prior collision N

=Y
=Y
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behind them as well. Consequently, the mean free path of those
particles that cross y = y, is about twice [.

We can also show by a straightforward geometrical argument
that the average vertical travel of randomly scattered paths is two
thirds of the average path (Problem 11.1). Consequently, « is
3(20)), or 3.

As it happens, this value is still too low. The effective penetra-
tion of momentum continues a little beyond the next collision be-
cause scattering is not perfectin any collision. When this correction
for the “*persistence of velocities'’ is made, « comes out close to
unity. The actual value depends slightly on the character of the
molecules.?

VISCOSITY COEFFICIENT
The x-direction momentum of a particle at y, + «f is mu/,,, a.
This can be expressed in terms of the momentum at y = y, with the

help of a Taylor-series expansion,

mu .. = mul,, mc—gf“(af) SR (11.3)

Higher-order terms should be negligible, because / is usually small
with respect to macroscopic changes. The molecule flux from the
top to the bottom is given by Eq. (2.52) as nC 4. We multiply this by

mu . to get the momentum flux leaving the top, J*,...,
nmC dul

o = —— U+ al | 114

' 4 (u ne dJ’i)r) ( )

Similarly, for the momentum flux leaving the bottom we obtain

~_nmC( — du
S o = =7 (u al dy”) (11.4a)

The net momentum flux, J,.., crossing the surface, y = y,, from
bottom to top is, accordingly,

o = — 'AapCfd—u

& (11.5)

¥r

+“More complete discussions of the persistence of velocities are given by Sir
James Jeans, The Dynamical Theory of Gases, 4th ed., Dover Publications,
Inc., New York, 1954, chaps. X and XI, and by E. H. Kennard, Kinetic Theory of
Gases, McGraw-Hill, Inc., New York, 1938, chap. IV. The precise value of « is
not of major importance in the approximate mean-free-path theory. The
actual value of « is obtained directly from the more sophisticated calcula-
tions that we discuss in chapter 12.
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But J..... [recall Eq. (1.49)] is the same as r,. and is known from ele-
mentary fluid mechanics to be

Tyx = —p o (11.6)

for this unidimensional flow configuration. It follows that the vis-
cosity coefficient u is

u =1 apCl (11.7)

When the appropriate corrections are all applied to « and /, we
obtain at last

o~ 0.499 -MC_ (11.8)

V2wa?

The temperature dependence of this x is proportional to the square
root and it arises strictly in C.

Equation (11.8) is remarkable in that it shows that the viscosity
of a dilute gas is pressure-independent. Maxwell first predicted this
result and later offered experimental justification for it. Consider-
able experimental justification was required because the result
jarred people’s intuition. An isothermal increase of pressure re-
sults in a more dense gas, and one feels that a more dense gas
should somehow be more viscous. However, the mean free path is
shorter for the higher-pressure gas. Thus, although more particles
cross the plane y = y, each one passes through a smaller change in
average velocity and is therefore less effective in retarding the flow.
The increase in number and decrease in [ are effects that just bal-
ance each other out, The pressure independence of u breaks down
at high pressure, but so, too, do the dilute-gas assumptions upon
which Eq. (11.1) is based.

THERMAL CONDUCTIVITY

We are now interested, notin the transport of momentum butin
the average thermal energy of particles &. The penetration of en-
ergy turns out to be generally a little greater than the penetration of
momentum. The reason is that the energy a molecule carries in
translational kinetic form ‘‘persists,’" not as the velocity but as the
square of the velocity. The persistence effect accordingly con-
tributes more heavily to energy transport than to momentum trans-
port and « must be replaced with a somewhat larger constant 3.
Another effect contributing to the greater magnitude of 3 is that
faster molecules have larger free paths, and they can carry con-
siderably more energy over the longer paths than do slow mole-
cules over shorter paths.
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Equation (11.5) can then be paraphrased as

- &
Jenersy = —3 BnCl — 11.9
v = —ipnCly ) (10.9)
However, the specific heat at constant specific volume ¢, is such
that
_ 9 _ 9 dy
mc, = 3Tl ~ ayl,. dT),, (11.10)

where constant v and y = y, are equivalent restrictions on the par-
tial derivatives. Thus, we obtain

T
Jenerey = —% ﬁpCic.. q_

& (11.11)

¥r

But J...... is the unidimensional heat flux, q,. From Fourier's law
[Eq. (1.50)] we have

dT|

y = —A— 11.12
q dyl,. ( )
Combining Egs. (11.11) and (11.12), we obtain for the thermal con-

ductivity, A,
A = 18pCle, (11.13)

or
e (--*-5_— meg (11.14)
2\2x) o°

where the temperature dependence of A is carried entirely in C.

Equations (11.13)and (11.14) bear a strong similarity to Egs.
(11.7) and (11.8) for the viscosity. Both x and \ vary as C ¢< and both
are pressure-independent. Before we go on to consider the diffu-
sion of mass, let us explore the similarities between heat and
momentum transfer in more detail.

PRANDTL NUMBER AND
EUCKEN'S FORMULA

The Prandtl number, Pr, is the well-known dimensionless group
that characterizes the relative influences of the thermal and
viscous diffusion processes in a fluid. It is defined as

Pr = S . (11.15)
where v is the kinematic viscosity 4 pand a is the thermal diffusivity

N\ pc,. We have just seen that thermal and viscous diffusion in a gas
are very similar processes, and we can anticipate that Pr will not be
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very far from unity in a gas. The elimination of C from Egs. (11.7)
and (11.13) gives
x_ G
3 X (11.16)
and the introduction of v = ¢, ‘c, in Eq. (11.15) yields
(a3
Pr={-=]- 11.17
(6) Y ( )
For an ideal monatomic gas v is } (see Sec. 3.7) and the ex-
perimental value of Pr for argon in the range 0°F < T < 2300°F is
0.662 =+ 0.008. (Other typical values of Pr, », and a are given in
Table 11.1). It follows that
B
(._._) e :‘I-gl:-nl atomie 25 (1118)
& S yonatomic
TABLE 11.1 Some Transport Properties for Selected Gases at Atmospheric
Pressure and for Saturated Liquids
Kinematic Thermal
Temperature, viscosity, diffusivity, Prandtl No.,,
Fluid °K v (m?/s) x 10° a(m?/s) x 10° Pr = v/a
Gases
Argon 273 11.75 17.47 0.67
Helium 255 9.55 13.68 0.70
Hydrogen 300 10.95 15.54 0.70
Nitrogen 300 1.56 2.20 0.7
Oxygen 300 1.59 2.24 0.71
Air 300 1.57 2.22 0.71
Cco, 300 0.83 1.06 0.77
Ammonia 273 1.18 1.31 0.90
Steam 373 2.17 2.25 0.96
Liquids
Water 273 0.179 0.0131 13.7
Water 373 0.0294 0.0168 1.75
Ammonia 303 0.0349 0.0174 2.01
Glycerin 303 50.0 0.00929 5382,
Mercury 293 0.0114 0.43 0.027

A more precise theoretical description than we discuss here® also
leads to this value.

*A more detailed discussion and references are given by Sir James Jeans,
op. cit.
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Diatomic gases will transport rotational as well as translational
energy unless the temperature is very low, and other kinds of
energy as well, if the gas is very hot. For molecules that carry
energy in rotational and translational form we found (Sec. 3.7) that
v = I.The Prandtl numbers for such gases — air at room tempera-
ture, for example — is about 0.72. Thus

(E) ~ Baiatomic == 1.94 (11.19)
& /f diatomic

In 1913 Eucken used these simple ideas to relate viscosity to
thermal conductivity in a more complete way. He began by dividing
¢, into two parts: c,, was the specific heat related to just the energy
of translation, and c,, was the specific heat related to all other
modes of storage. He divided X into a component A, the conductivity
of translational energy and a component A; the conductivity of the
remaining molecular energies. He could then write Eq. (11.16) in

the form
A=M+N= [(E) € T (é) c..,-],u (11.16a)
/S (£ ]

where (8 «). is the value of 3, « appropriate to pure translational
motion and (3 «), is the value appropriate to the internal motion.

Equation (11.18) gives the value of 3/« for purely translational
motion as about 3. We can assume that (3 «). is unity, on the other
hand, because the internal modes of molecular energy are trans-
ported in exactly the same way as is momentum.

Furthermore, we obtained, in Sec. 3.7, the elementary relation-
ship ¢, o = 3R%/2, where RY is equal to (¢, — ¢.) or (y — 1)c..
The following relations can then be written easily:

(E) e = 33(v — Dl

44
and

(9) = 1e— §RY) = cll = iy = 1)

o
Substitution of these results in Eq. (11.16a) gives Eucken’s formula,
A=310y— Huc, (11.20)

For most gases at low pressure Eucken's relationship is
accurate to within just a few percent, although, under some
conditions, some gases exhibit serious deviations from it (see
Problem 11.9).

EXAMPLE 11.3 How is the Prandtl number affected by the com-
plexity of molecules in a gas?
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An immediate consequence of Eucken’s formula is that

Pf! Fucken =
The complexity of molecules influences the ratio of specific heats,
v, which appears in this result. The substitution of

_D+2
TTTD

where D is the number of degrees of freedom of the molecule, in
this expression gives

Pr| __20+4_c_>:0+2
[uck(n—zn _1_9'- 8 D
and
B_2D+9
«a 2D

For the simplest (monatomic) gas there are three degrees of
freedom and

1

ral o

pr|Eucken = % and

B

ol&:

This compares favorably with Pr = 0.67 for Ar and He, as given in
Table 11.1.

Of the gases listed in Table 11.1, ammonia and steam are most
complicated. For them, D > 6, because there will be three modes of
translation, three modes of rotation, and some contribution due to
partial excitation of vibration. The Prandtl number is given as 0.90
and 0.96, respectively, as compared with the value 0.76 that is
predicted for D = 6.

In the limit as D — « the equation gives

lim Priguekes = 1 and lim B =1

D— e D= &
This result reflects the fact that the internal modes of energy stor-
age are solely responsible for energy transport in extremely
complex molecules, and that the internal modes of energy are
transported in the same way as momentum [cf. Eq. (11.16a)].

Suppose now that two stationary gases are distributed, at
constant temperature and pressure, along a conduit. The number
densities of the two components n, and n; might be distributed as
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shown in Fig. 11.3. Since the number density, n, of the mixture
must equal the sum of the components,
ni + n2 = n, aconstant (11.21)
it follows that the concentration gradients must obey the relation

dni dﬂz
== (11.22)

at each point. The molecule fluxes must also balance each other,
I = —di (11.23)

Once more we can write by analogy with Eq. (11.5) that

= —InC} — X
Iy InCily pre (11.24)
or
= dn'\
= ik o e
Jn: = —19Cala dx (11.24a)

where 7 is a constant like « or 3 appropriate to the transport of the
molecules themselves.
It follows from Egs. (11.22), (11.23), (11.24), and (11.24a) that

Gk = 19Cals (11.25)

and it follows from a comparison of Fick's law, Eq. (1.51), with Egs.
(11.24) and (11.24a), that

Di2 = i9Cily = D3y = inCahr (11.26)

The subscript 12 on D;> denotes the diffusion of component 1
into component 2; the subscript 21 denotes the converse. However,

Fig. 11.3 Number-density distribution in a two-component mixture.

n= o,

number density of
component 1,

number density of
component 2, #,
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the elementary mean-free-path theory used to develop Eq. (11.26)
becomes accurate only when two components are nearly identical.
When this happens, D> and D»; approach a common value, often
called the coefficient of self-diffusion, D,,. Strictly speaking, D,, has
little physical meaning because the diffusion of indistinguishable
particles is a fictitious process. However, D, is useful in describing
the diffusion of very similar gases — an isotope of oxygen into nor-
mal oxygen, for example. Theoretical and experimental studies of
self-diffusion show that n ranges between 1.20 and 1.55, depending
upon the nature of the molecule.

Coefficients of mutual diffusion D> or D are often presented
for traces of different gases in a common gas. Table 11.2 lists

TABLE 11.2 Diffusion Properties for Low-Concentration Traces of Gases
in Airs at Atmospheric Pressure and 20°C

Trace Gas

Hydrogen (Hz)

Helium (He)

Methane (CHs)
Ammonia (NH3)

Steam (H20)

Nitrogen (N2)

Ethane (CzHs)

Oxygen (03)

Methanol (CH:0H)

Argon (Ar)

Carbon Dioxide (CO2)
Propane (CiHs)

Ethyl alcohol (C2HsOH)
Acetone (C;HsCO)
Butane (CsHi0)

n-Propyl alcohol (CsH70H)
Sulfur dioxide (SOz)
Chlorine (Cl2)

Pentane (CsHi2)

n-Butyl alcohol (CsHsOH)
Benzene (CsHs)
n-Octane (CsHis)
Naphthalene (CioHs)
Carbon tetrachloride (CCls)

Molecular Diffusion
weight coefficient Schmidt Lewis
of trace, D, MNo. Sc, No. Le,
Ib,, Ib,-mole 10% ft2,/ sec v/D D/a
2.02 71.9 0.22 3.24
4.00 57.5 0.22 2.59
16.04 18.8 0.84 0.85
17.03 25.9 0.61 1.16
18.02 26.4 0.60 1.18
28.02 16.1 0.98 0.73
30,07 13.0 1.22 0.58
32.00 21.4 0.74 0.96
32.04 15.8 1.00 0.71
39.95 215 0.73 0.97
44,01 16.5 0.96 0.74
44,09 10.5 1.51 0.47
46.07 12.2 1.30 0.55
58.08 9.9 1.60 0.44
58.12 9.0 177 0.40
60.09 10.2 1.55 0.46
64.06 12.3 1.28 0.55
70.90 11.1 1.42 0.50
72.15 8.0 1.97 0.36
74.12 8.4 1.88 0.38
78.11 9.25 11 0.42
114.22 6.0 2.62 0.27
128.16 6.15 2.57 0.28
153.84 7.4 2.13 0.34

“For dilute mixtures the properties of air can be considered unaltered by trace components.
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diffusion coefficients D of this type for traces of various gases in
air. Such a table is only made up for trace mixtures, because D
generally depends upon the concentration of the diffusing species
when it becomes large. As a first approximation, Eq. (11.26) may be
employed to estimate the mutual diffusion coefficient of the trace
gas, but the evaluation of the mean free path for the trace must be
based on collisions between it and the surrounding foreign
molecules.

Just as the Prandtl number compares » with a, we have two
additional dimensionless properties of a gas that compare D with
both » and a. They are

Schmidt number, Sc = - (11.27)
D Pr
Lewi ber, =—=— .
ewis number Le 5 58 (11.28)
and their values for traces of common gases in air are also included

in Table 11.2.

SUMMARY OF SOME
WORKING EQUATIONS

This section sets down a brief compilation of some working re-
lations for the transport properties of a dilute gas. The basic deter-
minant of u, A, and D is the mean free path /. With the factor 1.051 \2
included, this is

= 1.2051 (11.29)
\2rho?

butn = p kT, so the temperature and pressure dependence of / are
reflected as follows:

/= l'_951kT (11.30)
\V2malp
and in terms of the mean speed, C = \8kT/mm, [ is
g = L0l (11.31)
8v202p

The viscosity equation resulting from this mean free path is

mC  0.998 [mkT
= 0499 —— - =— [T 32
8 \2wa? Tal \) T (LLs2)
Equation (11.32) represents agas composed of smooth elastic
spheres. The advanced methods of kinetic theory® show that for

6See, for example, S. Chapman and T. G. Cowling, The Mathematical Theory
of Non-Uniform Gases, Cambridge University Press, New York, 1960, chaps. 9
through 14.
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more complex molecular descriptions the resulting viscosity ex-
pression is the quotient of the preceding expression and a correc-
tion factor. One of the most widely used results of this kind is
““Sutherland’s formula,”” which is the viscosity based on the Suther-
land potential [Fig. 9.2(c)]:

oo VIMKT 1
b= 0998 e (11.33)

The constant S characterizes the relative strength of attraction of
the molecules of a given gas.

TABLE 11.3 Values of S for Sutherland's Formula®

Temperature
Gas S range, °C
Hydrogen 83 —60.2 to 185.3
7.7 —20.6 to 302
Helium 78.2 —60.9 to 183.7
80.3 15.3 to 184.6
Methane (CHa) 198 17 to 100
Ammonia 377 15 to 183.8
Neon 61 20 to 100
Carbon monoxide 118 15 to 100
Ethylene (CzHa4) 225.9 —21.2 to 302
Nitrogen 118 15 to 100
102.7 —76.3 to 250.1
Air 114 0 to 300+
Nitric oxide 128 20 to 200
Oxygen 138 16.75 to 185.8
Sulfuretted hydrogen 33 17 to 100
Hydrochloric acid 357 12.5 to 100.3
Argon 169.9 14.7 to 183.7
147 20 to 100
Carbon dioxide 239.7 —20.7 to 302
274 15 to 100
Nitrous oxide 274 15 to 100
260 28.1t0 278
Methyl chloride 454 —15.3 to 302
Sulfur dioxide 416 18 to 100
Chlorine 325 12.7to 99.1
Krypton 188 16.3 to 100
Xenon 252 15.3 to 100.1

scompiled by S. Chapman and T. G. Cowling, The Mathematical
Theory of Non-Uriform Gases, Cambridge University Press, New
York, 1960, p. 225. Reprinted by permission.
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f(T*)

A very convenient form of Sutherland’s formula is obtained by
dividing this u by a reference value u,.;. The result,

T\*2 Tt + S
B Ii“lr‘.{(qlrrd) T + S (11l34)

is useful and fairly accurate for interpolating data as long as two
values of u are known. Table 11.3 presents values of S for many
gases.

Another general formula, suggested by Bromley and Wilke,’
represents a useful semiempirical modification of the viscosity pre-
dicted on the basis of the Lennard-Jones potential. Itis

(’T);— #(T%) (11.35)

w = 3.33 x 10—
where T* = T(k'e), the Lennard-Jones reduced temperature, M is
the molecular weight, T. and v. are the critical temperature and
volume, and the units are T, in °K, v. in cm? ‘g-mole, and u in poises.
The function f(T*) is given graphically in Fig. 11.4.

Fig. 11.4 Empirical viscosity function, f(T*), for the Lennard-Jones potential
:,l"t
50 100 500 1000

T T T T 11 T T 1T
— 30

7L. A. Bromley and C. R. Wilke, /nd. Eng. Chem. 43, 1641 (1951).
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The viscosity of mixtures is also predictable, but the results are
exceedingly cumbersome. The following approximate relation®$ for
a binary mixture gives reasonable estimates of g, -:

K . M2

p=— 4 B2 36

H T4 (a/x)drz 1+ (xi/%2)é2 1 (1.35)

where x; and x» are the mole fractions of components 1 and 2, re-
spectively, and

(1 + Cui/p2) (M) My) 412
V8 + M/ M)

(L /) (M M) 2
8 + Mo/ My)12

P12 =
(11.37)

$2.1

The thermal conductivity based on mean-free-path theory
generally takes the form

A= gcm (11.16b)

so for rigid spherical molecules 3 '« ~ § and

. mC . . kT
A=3c(049——) =3 c,.( : 3\_’".”._)
( \21.'02) B U8 (wa)? (1135)

The Sutherland model can also be employed to correct Eq.
(11.38). The result is simply

= :_':cL.(D.EIQS l(i”g_f) / (1 '3 ?,) (11.39)

T\ T+ S
A= \( TM) s (11.40)

or

where S has the same values as given in Table 11.3.

Generally, the problem of predicting A\ by statistical means re-
duces to the problem of approximating 3/«. Eucken’'s formula
(recall Example 11.3),

B_%y—5_2D+9

«- 3 = (11.20a)
gives the basis for obtaining A from . If experimental values of v
are available, this result will usually be correct within a few percent.

The prediction of A for mixtures is again a complicated affair.

8Due to C. R. Wilke, J. Chemn. Phys. 18, 517 (1950).
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11.

1

LAW OF

Brokaw” suggests that A\, might be approximated as the average
of a simple mean and a geometric mean. Thus

—
Amix = _i[(xm + xahg Fass) + (f"i R +) ] (11.41)

We have given a result for the coefficient of diffusion which is
really only accurate for self-diffusion:

- 1.0517(0.998 |mkT
Du = inCith = 0.998;;(",773" \/._;r._.)
or
1.053
D” - Tn Mrigid sphere (11‘42)

The constant, n, will range from ¢ for rigid spheres up to about 1.55.
For dissimilar gases the equivalent expression can be shown to be

D [0.993 ;kr(_m]m]
- nymim: '

(11.43)

rrfn:-? \ T

The Sutherland model gives this same result divided by
1+ S;2 T,where S,z is a constant characterizing the interaction of
species 1 with species 2. From this we can write

Nt T \372 Tl'l‘ + 8 2
D2 = Diz,es —( ) S b Slz

n Tre'f T + S]Z
or
i l 512 Trt-f -+ S|2
Diz = Dizee p:..r(Tﬂ,f) Tt ou (11.49)

In this section we have tried to show, in a summary way, the
kind of results that can be obtained for transport properties using
mean-free-path methods, and we have sketched without proof
some of the extensions of these results that can be made. Actually,
the law of corresponding states once again provides the method by
which we can circumvent the limitation of these predictions to
dense gases. We consider these methods next.

CORRESPONDING

STATIES

FOR

TRANSPORT
PROPERTIES OF
DENSE GASES

The linear phenomenological transport equations described in
Sec. 1.6 have now been developed with the help of a neat and ele-

“R. S. Brokaw, Ind. Eng. Chem. 47, 2398 (1955).



322

elementary kinetic theory of transport processes

mentary theory. The mean-free-path method not only shows how
these equations arise, but it provides considerable insight into
transport phenomena as well. It also gives expressions for the
transport properties, but these have some weaknesses. The first
is their limitation to dilute gases. A second is the requirement that
we know the effective radius of the molecule — a parameter that is
often obtained by the circular process of comparing Eq. (11.8) with
viscosity data.

Another shortcoming of the theory as a whole is that it is limited
to small gradients of T, n, or ¢o. Thus, for the theory to be valid,

duf I\ oT (1 an [ [
'{'JJ}(E)' a’ (?_) or 3y (n) must be <« 1 (11.45)

In chapter 12 we take up the more general strategy developed
by Boltzmann for treating nonequilibrium problems. Here we shall
find that the linear transport equations in chapter 1 appear as first
approximations when such conditions as (11.45) are no longer valid.

But the Boltzmann theory is also limited by the diluteness
assumption and the need for a knowledge of molecular detail:
therefore, we wish to return briefly to the law of corresponding
states. Once more, for dense gases, the law of corresponding states
provides the basis for an empirical method that is effective and
simple. As we saw in chapter 9, the existence of a potential of
the form

o) _ f(i) (9.67)

€ a

(which includes the Lennard-Jones potential) results in a dimen-
sionless equation of state, It also results in dimensionless transport
properties of the form!10

3
D* — \DT% 2= Do, T (11.46)
€
= AT T L)
€
and
* Ag? m ¥y* T*

0For a brief discussion, and bibliography, see R. B. Bird, J. O. Hirschfelder,
and C. F. Curtiss, “The Equation of State and Transport Properties of Gases
and Liquids,”" Handbook of Physics, 2nd ed. (E. V. Condon and H. Odishaw,
eds.), McGraw-Hill, Inc., New York, 1967, chap. 4.
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where the terminology is the same as was used in chapter 9. After
rationalization of critical data in terms of the molecular properties
o, m, k, and ¢, it is possible to write

g- — Dp, T) (11.49)
m
= = u(p:, T:) (11.50)
He

and
A
N AP T)) (11.51)

Carrelations of this kind have been carried out with success.
Figure 11.5, for example, shows Hougen and Watson’'s!! reduced
viscosity curve. Bird et al.!2 cite a number of recent works that have
carried correlations of this kind on to greater refinement.

TRANSPORT
PROPERTIES OF
11.5 SOLIDS

The simple mean-free-path approach to the calculation of
transport properties of gases can be applied to solids as well. Two
important transport properties of solids are the thermal conduc-
tivity and the electrical conductivity, which we shall consider here.

As we noted in Sec. 10.2, the thermal energy of a solid may exist
in various forms. In the transport of thermal energy, however, the
predominant energy modes are the lattice vibration and the trans-
lation of free electrons. Because lattice vibrations can be treated as
phonons, thermal transport in solids can be treated as energy
transport in phonon and electron gases, and the mean-free-path
theory of molecular gases is indeed directly applicable,

In most solids, one of the two energy modes — phonons or the
translation of free electrons — usually dominates the other in
energy transport. Just as we saw in Sec. 10.2 that there was little or
no free-electron contribution to the thermostatic properties of
solids, this contribution also proves to be negligible in the transport
properties of dielectric solids. The situation, however, is quite
different in metals. Although the free-electron contribution to the
thermostatic properties of metals is negligible as compared to the
phonon contribution except at very low temperatures, we shall see
later that it is dominant in the transport properties.

11J, O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases
and Liquids, John Wiley & Sons, Inc., New York, 1954, chap. 9.
12Bird et al., op. cit.
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Reduced viscosity g,

Fig. 11.5 Generalized viscosity chart.
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THERMAL CONDUCTIVITY

OF A DIELECTRIC

Following an argument similar to that which gave Eq. (11.13), we
may express the thermal conductivity of a dielectric in the approxi-
mate form as

N = 4(pc.)CI (11.52)

where pc, is the phonon heat capacity per unit volume, Cis the
phonon velocity, and lis the phonon mean free path. The constant 3
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in Eq. (11.3) has been taken as two thirds on the basis of simple
kinetic arguments (Problem 11.1), because little is known about the
exact value of 3 and, moreover, the formula is in any case an
approximate qualitative one. As given in Eqgs. (10.12) to (10.14), C
can be easily calculated from tabulated properties of solids, and it
is relatively insensitive to temperature. For most crystalline solids,
C is approximately 5 X 105 cm ‘sec. The phonon heat capacity pc.,
however, is a function of temperature, as indicated in Eq. (10.20). At
low temperatures in particular, ¢, o« T3,

The mean free path / of a phonon is determined primarily by
two processes, the collisions of a phonon with other phonons and
with the crystal or grain boundary and lattice imperfections. These
two collisional or scattering!? effects can be combined accordingly
to give a geometrical mean /:

1 1 1

170 + L (11.53)
where /, and /, are the mean free paths between phonon-phonon
scattering and between phonon-geometric scattering, respectively.
It is clear physically that /, and /, cannot be simply added to get /,
but the inverse of the mean free paths can be superposed linearly,
atleastin an approximate sense, because the inverse directly char-
acterizes the contribution of the particular scattering.

The geometrical scattering effect is almost constant over a
wide range of temperatures but begins to decrease with decreasing
temperature in the range below about 100°K. When at very low
temperatures, say below 30°K, /. becomes comparable with the
width of the test specimen. The value of / is then limited by the
width, and the thermal conductivity becomes a function of the
specimen dimension. The phonon-phonon (or thermal) scattering
factor 1/1, is found experimentally to be almost directly propor-
tional to the absolute temperature or /, o< 1/T. Because of the in-
crease of thermal excitation, we naturally would expect this to
increase with increasing temperature. Some typical values of /, are
shown in Table 11.4.

THERMAL AND ELECTRICAL
CONDUCTIVITY OF METALS

For the thermal conductivity of metals, the first thing is to de-
cide whether the electrons or the phonons carry the larger share of
the thermal-energy transport. It is found that in pure metals the

13The term “'scattering'’ is commonly used to designate a molecular collision,
because no contact actually occurs between the two molecules — they are
simply scattered by the interaction of force fields. The terms ‘‘scattering"
and "collisional’ are synonymous for our purposes.
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TABLE 11.4 Representative Values of the Mean Free Path for Phonon-
Phonon Scattering [calculated from Eg. (11.52) with C=
5 % 105 cm/sec]

Crystal T, °K pc,, cal/cm3-°K A, cal/cm-°K-sec Iy A
Quartz® 273 0.48 0.03 40
83 0.13 0.12 540
NaCl 273 0.45 0.17 23
83 0.24 0.064 100

sAlong the optical axis.

electron contribution is one or two orders of magnitude higher
than the phonon contribution, whereas in very impure metals or in
disordered metals, the phonon contribution may be comparable
with the electron contribution. This point is made evident by com-
paring values of the thermal conductivity for pure metals, di-
electrics, and alloys. In all cases the electron contribution is
predominately that of electron-phonon scattering and not electron-
electron scattering.

Equation (11.52) is directly applicable here, but the various
terms now refer to the free electrons. In the kinetic description of
free electrons, it is convenient to introduce a parameter called the
relaxation time, r, which is the period between collisions:

(11.54)

.,
i
o~

The electron velocity, C, can be estimated from the Fermi level, uo
[as given in Eq. (6.44) and Table 6.1], which represents the kinetic
energy of free electrons at 0°K. The use of w is justified because in
the normal temperature range, as can be shown from Eq. (6.45), u
differs only slightly from wo. Therefore,

o ~} m,C? (11.55)
or, from Eq. (6.44),
2 213
2’:” (§3§r %’) =4 m.C? (11.56)

where Ny, Vis the number density of free electrons at 0°K. Since in
general the number density n is relatively insensitive to tempera-
ture, n ~ Ny/V. The values of n at 0°C, given for some metals in
Table 6.1, can thus be used to estimate C.
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Equation (11.52) can be then expressed as

2
A =4 pc, Gl = %’fi—f (11.57)

Using Eq. (11.55) and the approximate expression for ¢, given by Eq.
(6.48), we have
w2 nk?T2 =2 nk2Tr

e (11.58)

This result is used later in deriving a relationship between the
thermal and electrical conductivity of metals.

For electrical conductivity we must first consider what the
physical effect of an imposed voltage E is. A voltage difference
accelerates a negatively charged particle toward the higher voltage.
Without any collisions the electrons would accelerate without limit,
but in a metal lattice they suffer collisions and have to be reacceler-
ated. We can calculate the average drift velocity u,; that is developed
between collisions in a voltage gradient by using a heuristic argu-
ment. Newton's law gives for the force, on an electron, F = eE,

d U4
eE = m, pr m. . (11.59)

where e is the charge on an electron. Thus

er
ui=E (11.60)

The flux of charge i subject to the gradient is simply
i = neus (11.61)
Combining Egs. (11.60) and (11.61), we obtain

elr

i=n E (11.62)

e

This has to be equivalent to the phenomenological relation given by
Ohm's law,

i = oE (11.63)

The important formula relating the electrical conductivity to the
microscopic electronic parameters follows from Egs. (11.62) and
(11.63)

elr
m,

(11.64)

oa=n

As ¢ can be measured easily, Eq. (11.64) can be used to deter-
mine r. From the value of r, we can then calculate / using Egs. (11.54)
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and (11.56). With the basic microscopic electronic parameters
known, all thermodynamic and transport properties of metals can
be calculated. The thermal conductivity, for example, is given by
Eq. (11.57). The values of these electronic parameters for some
common metals are tabulated in Table 11.5.

TABLE 11.5 Values of Electronic Parameters for Metals at 0°Ce

n % 10-22.6 o X 10717 C X 10784 T X 1014 [ X 108
Metal cm™3 esu cm/sec sec cm
Li 4.6 1.06 1.31 0.84 110
Na 2.5 2.09 1.07 3.27 350
K 1.3 1.47 0.85 4.35 370
Cu 8.5 5.76 1.58 2.27 420
Ag 5.8 6.12 1.40 4.07 570
Au 5.9 4.37 1.40 2.93 410

“Reference should be also made to Table 6.1.

’n refers to the values at 0°C.

‘e refers to the measured values at 0°C.

“C refers to the calculated values from Eq. (11.56).
‘v refers to the calculated values from Eq. (11.64).
/1 refers to the calculated values from Eq. (11.54).

A simple useful relationship between the electrical and thermal
conductivity of metals can also be established. Division of Eq. (11.58)

by Eqg. (11.64) gives
AN ow k2
Ao (E) T (11.65)

which is called the law of Wiedemann and Franz.
In conformity with Eq. (11.65) we can define the Lorenz
number L

L=

N w2 (k) Watt-ohm (11.66)

LSRR in (L S ) RALLL
7= 3 \e 45 < 10 5

Table 11.6 provides a comparison of this result with observed values
of L for several elementary metals at moderate temperatures. The
comparison is really very good — within 6 percent in most cases. At
low temperatures, however, it can be shown that the Wiedemann-
Franz law is no longer applicable when electron-phonon scattering
is dominant. At very low temperatures, where the electron scatter-
ing due to defects and impurities is the primary scattering mecha-
nism, Eq. (11.66) again seems to hold.
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TABLE 11.6 Experimental Values of the Lorenz Number, L = A\ /oT

L % 10-% Watt-ohm/°C?

Observed Predicted

Metal 0°C 100°C (wk)?/3e?
Ag 2.31 2.37 2.45
Au 2.35 2.40 2.45
Cd 2.42 2.43 2.45
Cu 2.23 2.33 2.45
Ir 2.49 2.49 2.45
Mo 2.61 2.79 2.45
Pb 2.47 2.56 2.45
Pt 2.51 2.60 2.45
Sn 2.52 2.49 2.45
W 3.04 3.20 2.45
Zn 2.31 2.33 2.45

A rigorous treatment of electron-transport processes due only
to electron-phonon scattering (as would be the case for pure
metals) gives'

= M(i]-:))s 4 (11.67)
and
1 _4A [TV O3 N2 1
N LT ((—)) 1[ + ;.3(‘2—) (T) ]Js o= J:l
(11.68)
where
O _ ["" _ xdc
J(T.) N [! (ex— (1 — e™) (11.69)

In these expressions A is a constant characteristic of the
electron phononinteraction in the particular metal, ) a characteris-
tic temperature of the metal very close to the Debye temperature
(Table 10.2), and N. the effective number of conduction electrons
per atom. Equation (11.69) can be evaluated analytically at the high-

14A, H. Wilson, The Theory of Metals, Cambridge University Press, New York,
1953,
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and low-temperature limits, ©,/T< 1 and © T > 1. Thus it follows
(Problem 11.14) from Egs. (11.67) and (11.68) that, for T <« 0,

ogo T35 Ao T2 (11.70)
and, for T > ),
goc T7! A ~ constant (11.71)

The above results indicate that the Wiedemann-Franz law breaks
down at low temperatures but is indeed correct at the high-temper-
ature limit.

EXAMPLE 11.4 A simple approximate expression for the total
emissivity (the ratio of the total emissive power of a surface to that
of a ““black’’ surface at the same temperature) of a metal at moder-

ate temperatures is
kT\112
“ - “(;5)

How would the total emissivity vary with temperature at high tem-
peratures? Determine the total emissivity of gold at 300°K on the
basis of the given value of the thermal conductivity for gold at that
temperature, 2.93Watt-cm/cm?2-°C.

At high temperatures B/T <1, we can approximate in the
integrand of Eq. (11.54) ex ~1 + x, and obtain

ey [ 1/0)
il 3 = =f =
(7)), wo-i(7)

Equation (11.67) thus becomes

1 T
p =A(6)

[cf. Eq. (11.71)]. Consequently, the total emissivity can be expressed

as
Ak \ 12
€ 4(@‘5) T

which indicates that e increases linearly with the increase of T. This
temperature dependence of eagrees with experimental observation.
For gold, ® ~ (), = 165°K from Table 10.2 and ©,/T ~0.55, so
we may use the Wiedemann-Franz law with good accuracy. The
expression for ¢ given above can be rewritten in terms of A as

kL\12
€ = 4(5}) T

(1.38 x 10716)(2.45 X 10—8)11 2 R
_ g (1:38 X 10719)(2.45 X 10°%) ~ —
‘ [ (2.93)(6.63 X 10-27) 300 = 15,830 yOhm-cm/sec

or
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But the conversion factor for ohms into electrostatic units is
1 0hm = (1/8.9876 < 10'') sec/cm, so

€ = 15830 X 10-5/+/89.876 = 0.0167

This predicted value is very nearly equal to the experimental
value for pure gold.

Problems 11.1 Find what the average vertical component of travel of
molecules across a plane y = y, is in terms of the mean free path.

11.2 A bundle of straws has lengths varying uniformly between 0
and L. If the bundle is scattered randomly over a line, what is the
ratio of the average length of straws crossing the line to the average
length of straws in the bundle?

11.3 Find the root-mean-square free pathin terms of the mean
free path. What is the most probable free path? What is the proba-
bility of finding a free path that is 0.001 mm or more in length, in air
at standard conditions.

11.4 Obtain for air at room temperature and pressure: /, Iy, and
the frequency of collisions. What are these values 200 miles above
the surface of the earth? How small a volume could still be called
“‘macroscopic’’ at sea level and at 200 miles elevation?

our ~ 3.7 X 1078 cm

11.5 Combine Fourier’'s law with the first law of thermodynamics
in such a way as to eliminate the heat flux g and obtain a second-
order differential equation in T.

11.6 Does pressure have the same influence upon A, u, and D?
Explain.

11.7 Derive an expression for u for a two-dimensional Max-
wellian gas.

11.8 Combine Fick's law with the principle of conservation of the
ith componentin such a way as to eliminate J,, and obtain a second-
order differential equation in n..

11.9 Obtain A, g, ¢, and ¢, data for several gases. Presentin tab-
ular form the following results: \/uc,, $((c,/c.) — §], the percent of
deviation of the data from Eucken’s formula, the pressure and tem-
perature at which data were obtained, 4v,/(9y — 5), and the observed
Prandtl number. Can you explain any of the more serious devia-
tions of theory from experiment?

11.10 Derive Eucken's formula and Pr|g..., for a two-dimen-
sional polyatomic gas.

11.11 Calculate u, A, and Pr for water vapor at 227°C and 1 atm.
For H20, ¢ ~ 4.6 X 1078 cm and « is somewhere between 0.998 and
1.14. Elementary statistical mechanics (Sec. 3.7) indicates that
v = 4 and ¢, = 3RY, in this case.
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11.12 Calculate u for a gaseous mixture of 40 percent H.O and
60 percent CO; at 1000°R and 1 atm. In this case a = 1.14, gy,0 = 4.6
> 1078 cm, and gco, = 4.59 X 1073 cm.

11.13 Plot p. lines for steam on u, versus T, coordinates and
compare them with Fig. 11.5. Note that to do this you must first try
to locate an approximate u. by graphical interpolation of existing
data. Comment on the prediction for H,0.

11.14 Verify Eqgs. (11.70) and (11.71).



a more detailed kinetic
theory of dilute cases

Chapter 11 provided an introduction to the methods of kinetic
theory in which the major analytical difficulties of the subject were
avoided. The use of approximate mean-free-path methods, for in-
stance, made it possible to obtain many of the important features
of molecular transport. However, kinetic theory can also be used to
obtain more precise results. It can, for example, be used to expose
aspects of transport behavior that only become really important
when gradients of properties become extremely strong.

This chapter is therefore devoted to an elementary discussion
of the methods of advanced kinetic theory. The starting point is
Boltzmann's century-old description of molecular behavior, which
has remained the foundation of the subject. The methods are more
heavily analytical than anything we have considered previously,
but they proceed in a very direct way from concrete considerations
of particle dynamics. They also result in a surprisingly complete
picture of nonequilibrium behavior.

333
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BOLTZMANN
INTEGRODIFFERENTIAL
12.1 EQUATION

ASSUMPTIONS

Boltzmann' developed the basic tool for treating nonequilib-
rium ideal gases in about 1872. This was an integrodifferential equa-
tion in the distribution function. It was formulated on consideration
of collisions, subject to appropriate methods of averaging, and it
provides a remarkably complete description of gaseous behavior.

An important result of the diluteness assumption is that we
need only consider binary collisions. Collisions of three or more
particles become impossibly difficult to treat, but they very seldom
occur in a dilute gas and can properly be ignored.

We again need an assumption akin to the principle of equal
a priori probabilities that was so basic in the study of statistical
mechanics. A related form of this idea is the "'ergodic hypothesis,”
which says that the time-average behavior of individual particles is
the same as their ensemble average behavior (recall Sec. 8.1).
These statements are clearly restricted to spatially and temporally
uniform gases. In the nonequilibrium situation we must state the
assumption in the following restrictive form: At any instant there is
no correlation among the locations in phase space of particles occupying
a small volume element éV. This is the so-called *‘principle of molecu-
lar chaos.’"?

A particle can, in general, be acted upon by a body force or
force that is proportional to the mass of the particle. Body forces
are generally the result of such external fields as gravity or mag-
netism. The body force per unit mass of a particle is designated in
this chapter as F(r, t). In multicomponent systems, particles of the
ith kind are acted upon by a force F(r, t). We take these forces to be
independent of velocity c. In a simple gravity field acting along the
z axis, F would be

F = (0)i + (0)j + gk

The units of F are dynes /g or cm/sec?.

'Boltzmann summarized this work in Vorlesungen uber Gas Theorie, vol. 1,
Leipzig, 1896, Lectures on Gas Theory, English translation by S. G. Brush,
University of California Press, Berkeley, Calif., 1964.

2When we use the principle of molecular chaos to derive Eq. (12.12), we do so
in the slightly different form which ter Haar identified by the name Stoss-
zahlansatz. D. ter Haar, Elements of Thermostatistics, 2nd ed., Holt, Rinehart
and Winston, Inc., New York, 1966, p. 17.
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DERIVATION

The additional assumption that translational energy is con-
served — that collisions are elastic — is also introduced at an early
stage of the development.

Consider a volume element in x space as shown schematically
in Fig. 12.1. Within the time interval t to (t + ét), a particle of the jth
species moves from r to (r + ¢, ét) and its velocity changes from
¢, to (c; + F; 6t), if we ignore collisions for the present. Newton's
second law of motion has been used to determine the effect of the
body force upon the velocity, and in turn upon the position, of the
particle. We should note carefully that the body force is the only
force acting upon the particle; intermolecular forces have yet to
be considered.

The particles have a distribution function f(r, ¢;, t), which we
wish to determine. As long as there are no collisions, we can write

fi(r, i, )8V Q2 = f(r + ¢ 6t, ¢, + F; ét, t +66)oVeQ  (12.1)

S——

number of same group of particles that we
particles considered at time t, as they
under con- appear ét later

sideration at

time t

Equation (12.1) says that all particles which began at point (r, ¢;)

‘arrive at point (r + ér, ¢; + dc,). This would be true in a collision less

gas, but collisions do occur. Their effect is to deflect certain of the
particles so that they end up in some other location. We can repre-

Fig. 12.1 Volume element in x4 space.

A

~Volume = §u = &V 602
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sent the effect of these removals (and of additional particles de-
flected into the element by external collisions) with the following
schematic equation:

f(r + . ét, ¢, + F, 8t t +68) 6V 602 — £(r, c,, t) 6V 860

=2 (I — Ty=)6VeQst (12.2)
i=1
The terms I',, " and I';; ' are called the collision integrals, and
we develop analytical expressions for them shortly. They have the
following physical meaning:

I, 6Vt = number of molecules of the /th kind that
join the group in the position and velocity
ranges|c,, ¢, + éc)and|r, r + ér)asa result
of collisions with molecules of the jth kind

I';; 6V e 6t = number of particles lost to the group as a
result of such collisions

The first term of Eq. (12.2) can be expanded in a Taylor series in
ot. If we restrict our attention to time increments that are short in
the sense that they subtend relatively small changes in the distribu-
tion function, then

f(r + ¢ 6t, ¢, + F. 8t t 4 6t) = f(r,c, 1)

. (’]f,‘ . l’]f.- = | afr |
i [c ar 6t + F"(Jc,- ot + 5 at:r 4.0 (12.3)
Substitution of Eq. (12.3) into (12.2) and division by 6V 31 §t gives the
Boltzmann equation,
ot o ot

af: N L
5 F ey = =2 Ty = Ty ) (12.9)

T Fe - =
de; j=1

We can combine the first two terms if we first observe that g dr
is, in reality, a notational convenience designating the gradient ¥.
Then we can combine the local change of f, with time, df, dt, with
the convective change of f, ¢,- ¥f, to get

(ﬁ + c_.-\')f. - the substantial derivative 2L

ot Dt
and

Df; df,

i Z; (I, ) (12.4a)
change changein f,
inf, resulting from
result- collisions
ing from
external

forces



12.1 Boltzmann Integrodifferential Equation 337

The term F.-df. dc, really represents a kind of logical extension of
the meaning of the substantial derivative. The left-hand side of
Eq. (12.4a) now designates a net rate of change in the distribution of
a swarm of particles. This change occurs directly in time; it also
occurs by virtue of any change in location; and it occurs by virtue of
external body forces. In the absence of collisions these changes
would compensate and sum to zero. Accordingly, we define a new
derivative in much the same spirit as the substantial derivative
is defined:

(f)_f‘) = Z ([‘u b= I‘rJ 7") (12'4b)
dt coll i

Equation (12.4a) gives the equilibrium, or Maxwellian, distribu-
tion function when f, does not depend upon t or r, and when F, is
zero. Thisin turn results in the left-hand side of the equation being
equal to zero. Thus we should be able to show that f, is Maxwell's
distribution, using?

2Ty —Ty2)=0 (12.5)

Our next taskis that of writing the collision termsin terms of the
distribution functions. This requires a more detailed look at the
mechanics of molecular encounters than we have previously under-
taken.

EXAMPLE 12.1 In Example 3.2 we obtained the steady-state dis-
tribution of particles in an isothermal atmosphere using statistical-
mechanical methods. This result can be written as

32 2

where n(z) = no exp (—mgz kT). |s this result consistent with the
Boltzmann integrodifferential equation?

The atmosphere is in local equilibrium; therefore, the collision
terms vanish. The derivative, Jf dt, also vanishes, because the
system is steady, and Eq. (12.4) reduces to

af r']f_

C— +(=9

=0
oz JC

where the body force, —g, is negative because it acts opposite the
direction of increasing z. Substituting the distribution function,
above, in this expression gives

mgC mgC
_mgC . mgC. .,
kT kT
‘This result is a special case of the *'principle of detailed balancing.” See

E. H. Kennard, Kinetic Theory of Gases, McGraw-Hill, Inc., New York, 1938,
p. 34, for a discussion of the principle.
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which is identically true. Thus an equilibrium result can be con-
sidered a legitimate solution of the Boltzmann equation. This
notion is examined further in Problems 12.8 and 12.9 and in the con-
text of Eq. (12.94).

FORMULATION OF
THE COLLISION

12.2 TERM

MECHANICS OF A BINARY

ENCOUNTER

Figure 12.2 shows two particles that have moved into each
other's force fields and are suffering a “‘collision.” Section 9.3
showed that the intermolecular forces, &,, usually attract at a dis-
tance and repel at short range. They generally far overbalance the
body forces m,F;, at close range; however, the latter can be just as
important because they act at all times — not just during the very
brief collisions.

It aids us in our consideration of a collision to identify ¢; and c;,
as the velocities before the collision begins, and ¢/, and ¢/, as the
velocities after it is complete. The following definitions are also
made:

mo=mi+m;, M="" m="
mo mg
S0
Mi+M; =1 (12.6)
Then from conservation of momentum,
moG = m.¢; + m,¢c; = mc’; + myc’; (12.7)

Fig 12.2 A binary encounter between particles i and j.
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Furthermore, G, the velocity of the center of mass of i and j, is a
constant during a collision, and

g =¢C—¢Ci=—4g;i
gij=¢i—¢;=—g\
g =19, = (9,
From these definitions the following results can easily be ob-
tained (Problem 12.1):

¢, =G+ Mg,
¢, =G+ Mg’

g 12.8
c, = G+ Mlgﬂ ( )
¢, =G+ Mgy

At this point we wish to introduce the assumption that transla-
tional kinetic energy is conserved during a collision. This is a more
restrictive form of the ideal-gas requirement that we embraced in
Sec. 2.1. It means that collisions are elastic and that no energyis
transferred between the translational and internal modes of stor-
age during collisions, Equation (12.4) remains a perfectly gen-
eral equation, but under this assumption the form of the term
z (I'yy v — Iy ™) is limited for use with ideal monatomic gases. As
1)

a result of the assumption we can easily show that the relative
speeds of the particles are the same before and after the collision.
Thus

g-g (12.9)

The conservation-of-momentum requirement, Eq. (12.7), can
also be expressed according to Newton's second law, as

mif, = = —F; = —mj¥, (12.10)

It follows easily that

mm (¥, — ¥,) = F(m, + m) (12.11)
ar
q_: (Y l‘) . F (T_ﬂf) (12 lla)
dt2 ™’ TN mimy; ’

From this it can be shown (Problem 12.2) that
(r, — r)) X (¢, — ¢,) = a constant vector K (12.12)

The vector K must be perpendicular to both vectors (r, — r,) and
(¢. — ¢,), whose cross product it represents. Since K is a constant,
the plane of collision defined by these vectors is also constant.
Conservation of momentum therefore requires that binary colli-
sions be coplanar.
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CHARACTER OF THE

COLLISION

Figures 12.3 and

12.4 show the character of an actual collision.

Figure 12.3 is a three-dimensional representation of a single binary
encounter. Figure 12.4 shows two such encounters in plan view.
Both figures should be viewed as though they were translating with
velocity ¢, so that j appears to be stationary while the other particle
approaches it with speed g. The terms, b, ¢, apse, and y, which
appear in the figures have the following meanings:

Fig. 12.3 Three-dimensional representation of a binary encounter.

Area = hdedb

“A /
4%
<— Length = | g, ldr, where dr >> duration of collision
Ma’r
3
] —a
Bji
o W
S
——--._.__-‘_..mlh // '\f‘/
— b \ -
Particle traveling toward
an inverse encounter with
- arelative velocity = g/,
| «—
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Fig. 12.4 Plan view of two binary collisions.

¥ J‘L

b = the impact parameter, or distance between the asymptot-
ic paths of the two particles

¢ = coordinate angle identifying the plane of the collision;
since collisions are coplanar, € is constant

Apse = center line of symmetry of the collision in the moving
coordinates
x = angle through which the approaching particle is de-

flected relative to particle /; depends upon b, g, and the
law of molecular interaction

STATISTICS OF A BINARY
ENCOUNTER

With this conceptualization of an encounter in mind, we seek to
account for the effect of collisions in adding and removing particles
from the group under consideration. The number of particles of the
jth type approaching particles of the ith type during the time in-
terval dt, within the volume increment dV = gb de db dt, and in the
velocity range [c;, ¢; + dc;) can be written as

f(r, ¢;, t) dV dQ = f,gb de db dt d2;
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because the principle of equal a priori probabilities specifies that
the velocities are randomly distributed in dV d%.

Similarly, the number of j particles that are liable to be hit is
f.gb de db dt d(2;. It follows that in a neighborhood dV d; dt of posi-
tion, velocity, and time, the number of collisions that remove
particles from consideration is

I';;=dV dQ; dt =f (f: dV d)(f,gb de db dt d2;)  (12.13)

The differentiais dV d2; dt are independent of b, ¢, or ¢; and can
be factored out of the integral on the right-hand side. Equation
(12.13) then becomes

Ty / [ / f.f,gb db de d2, (12.13a)
b=0f e=0 f 0;

An upper limit of infinity on the integral with respect to b assumes
that long-range attraction forces decay rapidly enough to assure
convergence. There are certain models for intermolecular attrac-
tion that do not converge and for which an arbitrary finite upper
bound has to be used in the integration. Such models are, of
course, implausible in this respect, although they might otherwise
be quite useful.

The computation of I';; ¥ requires the introduction of an elegant
conceptual device — that of the inverse encounter. We need some
way of counting the exterior collisions that add particles to the
range of interest. This counting must be accomplished from within
the element of interest, however. To this end, let us consider the
reversal of a collision as shown in Fig. 12.5. If the positions of two
particles were to be shifted after a collision, they could be made to
collide in such a way as to restore the original configuration.

Fig.12.5 Restoration of original velocities by an inverse encounter.

(a) adirect encounter between (b) an inverse encounter between
two particles two particles
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With the help of this idea we can devise a scheme for counting
the particles added to the region of interest by external collisions,
even though we do not step outside the region to execute the count.
For every collision that occurs within the region, there exists the
restorative velocity pair (¢, ¢’,) in the surroundings. The primed
velocities possess distribution functions f/; and f';, and these distri-
bution functions can be used to count collisions that restore par-
ticles to the region. Thus we can write the following expression, just
as we wrote Eq. (12.13):

I b dVvdQ dt =[H f'.f',g'b’ db’ de dt d ', dV’  (12.14)
b .e.‘.E’J-

The terms g’, b’, and dV’ are the same as g, b, and dV, so the
primes on them can be dropped. Since collisions generally change
the distribution functions f, and f, to f’; and f’,, these primes must
be retained. Finally, the primes on d®’, and d’; can be eliminated
with the help of the Jacobian of transformation:

| [ &

dey; de, = iJ . ---(—]—)‘ dQ; d (12.15)
iafy =ui

It turns out that although J is negative because of the changes in

direction with collisions, it is numerically equal to unity by virtue of

Liouville's theorem.* Thus Eq. (12.14) becomes

[, = f f [ . ,gb db de d<2, (12.14a)
h=0_J =0 J 2;

Returning to Boltzmann's equation, Eq. (12.4), with Egs. (12.13a)
and (12.14a) we obtain Boltzmann’s nonlinear integrodifferential
equation for elastic particles:

i, Of o, '
h e R + Fl---(?-—]; =2 [[j (f".f'; — fif )gb db de d;
ac; i

at =~ “Uor
(12.16)
For a single-component gas the Boltzmann equation becomes

of af  _ of [

—tec-—+F—= ) — Q .

a3t c o e [ (f'f'y — ffi)gb db de d@; (12.17)
In Eq. (12.17) we have retained the distinction between the distribu-
tion functions f, for particles considered to be stationary, and f;, for
particles considered to be approaching the stationary ones. This
distinction is necessary, because the integrations on the right-hand

4See, for example, S. Chapman and T. G. Cowling, The Mathematical Theory
of Non-Uniform Gases, Cambridge University Press, New York, 1960, sec. 3.52.
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MEAN FREE PATH

side are only to be done over f'; and f,, not over " and f. The distri-
bution fi —or f, in Eq. (12.16) — is, in effect, a dummy variable be-
cause it depends upon the variable of integration, ;.

We found in Sec. 11.2 that a simple argument shows that the
mean free path of a spherical particle moving among stationary
spherical particles would be (n7¢2)~!, where o is the diameter of the
particles. We alleged at that point that this result would be reduced
to (\Emml) ' when all particles move about with a Maxwellian
velocity distribution. Equation (12.13) now provides the means for
developing this expression.

Figure 12.6 shows the collision between two spherical but dis-
similar molecules. The equivalent diameter of the particles is
o1z = (a1 + 02) 2. We have shown in connection with Eq. (12.13) that
the number of collisions per unit volume and time in the range
dy, d2, db, and de is

fifagb db de d; d22;

By introducing b = ¢12 sin y, or b db = 152 cos ¢ sin ¥ dy (where
0 < ¢ < 72) and integrating, we can obtain the volume rate of
collisions, N;:

r/2 2
Nig =[ f frfggcr|33 di!p d[!z/ cos I,b sin 1,1’/ d’lf/f de (1218)
oo 0 0

The introduction of Eq. (2.43), the Maxwell distribution, for f,
and f> and integration of the result gives (see Problem 12.3)
2wk T(m, -+ m:)]'2

o (12.19)

Nz = annzﬂ‘llz[

Fig. 12.6 Collision between hard spherical molecules.

LN

Apse
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If there is only one molecular species, N;; can be obtained by re-
placing the subscript 2 with 1:

[xkT
Ny = 4,._,]:011\}'?' (12.20)

Actually this represents the result of counting each collision
twice. It is therefore a correct representation of the volume rate at
which particles undergo collision, butitis exactly double the number
of collisions.

We must next determine r, the average time elapsed between
collisions of a given molecule [recall Eq. (11.54)]. The frequency
with which the particle undergoes collisions is Ny ny, or, for
several species,

NJ
1_Nu_ Ne _Zf'_ ! (12.21)

T m ni m

or

(12.21a)

nJ‘
T = %
TN
I

where we pass to the more general subscript j. The mean free path
of the jth component is then

(12.22)

Substituting the average speed for a Maxwellian gas, \8kT mm
(recall Problem 2.11) and Eq. (12.19) for N;;, we obtain

1
m‘; (nio,2\(m; m) + 1)

I = (12.23)

For a single-component gas this becomes very nearly the result that
we anticipated in Sec. 11.2,

/= L (12.23a)

\2.?r03n

Itis useful to refine this result a bit further. The use of the result
of Eq. (12.18) to obtain Eq. (12.22) involves an implicit assumption
that! = rC = 7C. The factoring of the average in this case is a rea-
sonable approximation but not entirely accurate. A more precise
computation gives / = rC = 1.0517C, so

I = L.02) (11.29)

\2main

as we anticipated.
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EXAMPLE 12.2 Find the mean free path, /,, for molecules (m) and
L., for electrons (e) in a “‘plasma’’. (Recall Example 11.1.)
Using Eq. (12.23) we obtain for /,,

. -1
L = [r(n‘.g,qﬁ\Z + NG e + 1)]
My

but ¢.? is negligibly small and ¢..2 = 0,24. Furthermore,
m./m,, <1, so

4

':r-"?mamz

l, =

which is what we found in Example 11.1. For /,, we get

. s
In = ’:Tr(ﬂmcn.,mg\z + ngm-..rz\/;n—m - 1)]
m.

This result is surprising at first glance. Since m,,/m. > 1, the path is
very short, unless n. is quite small. The reason is that a slow-moving
molecule does not get far before it is struck by one of the fast-
moving electrons. If we neglect electron collisions as characterized
by the second term, then this gives exactly Eq. (12.23a).

Before returning to the problem of actually solving Boltzmann's
equation for the distribution function, we look at some other results
that can be obtained from it. Solving the equation is a difficult
business, as it happens, but much can be learned from it short of
actual solution.

BOLTZMANN
12.3 H THEOREM

COLLISION INVARIANTS OF A
BINARY ENCOUNTER

A collision invariant W (or summation invariant as it is frequently
called), is any molecular property® & whose combined value for both
i and j particles is conserved during a collision:

Y+ V¥ =W, 4 ¥, (12.24)

Mass, momentum, and energy are the three basic collision in-
variants that we are concerned with. Since m, = m’; and m, = m’;,

mi+m;=m"+m’ (12.25)
We have already noted that
mi¢; + m;c; = m¢’; + m,c’; (12.7)

“The symbol ¢ denotes any molecular property; ¢ includes ¥ as a special
case.
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Finally, since we have restricted our discussion to particles that
undergo elastic collisions,

imi(€.)? + imy(c;)? = imi(c')* + im (¢’ (12.26)

All three of these equations are examples of Eq. (12.24).

It is possible to show that particle mass, momentum, and
energy (or linear combinations of them) are the only collision in-
variants in a translational gas. Let us now prove the following
useful result related to collision invariants:

3 f f f f (", — fif)gbdb ded,; d2 =0  ifd, = ¥,
ij

(12.27)

This resultis fundamental to our subsequent analysis of binary
encounters. To prove it, we first write from symmetry,

[/‘[[q)"(f”f'f — f:f)gb db de d©2; d22,
= /]ffd)’;(f;f} o f"‘f';)gb db de d'; du,j

But d2; dQ; = d; d';; therefore,

f ff[ B(FiF — £if)gb db de d2, d2,
= —[fff Cb’i(f’,‘f’j — f;)g‘b db de d<2; dQJ

Ifa =d, thena = a/2 + d/2, so we can write

/f/f ®,(f"if"; — fif;)gb db de dQ; d;
= %f[[f (i — ' )(Fif'; — fif)gb db de dQ, dQ; (12.28)

Let us now restrict ® to functions of r, t, and c. We then observe that
interchanging ¢, and ¢; should not alter the right-hand side of
Eq. (12.28), because the meaning of such an interchange would be
no more than a change in the sequence of integration. Thus

f/f (9: — ®)(f':f'; — fif;)gb db de d: d2;

= f / [ (®; — )", — £.f;)gh db de d; d;
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It follows that

2 j ] ] j BAF'F, — 1.1,)gb db de dO, dO,
iJ
=12 | / f (@0 + b — ¥, — XA, — 1f)gb db de d, 2,
L JJ

(12.29)

The right-hand side of Eq. (12.29) will vanish when ® is a summation
invariant ¥ so the proof is complete.

DERIVATION AND DISCUSSION
OF THE H THEOREM

In 1872 Boltzmann® undertook to show that dilute nonequilib-
rium systems would naturally approach equilibrium. Using the
Boltzmann equation he showed how this approach takes place and
that the end result is the Maxwell distribution function. He began
by defining a quantity,” H = H(t), for a spatially uniform, but non-
equilibrium, gas:

Ht) =3 f f(c., t)In f(c, t) d2, (12.30)

or
H(t) = 3 niInf, (12.30a)
The importance of H is that it is a monotonic function of time.

To show this we write
0H _
at
Since t and , are independent, it is possible to differentiate under

the integral. The result is

- _ — g0
i E'_,ﬁ‘_(l +1Inf) ; de, (12.31)

But, for f, = f.(t, ¢, only) and for F, = 0, Eq. (12.16) — Boltzmann’s
equation —is

d
o I i E!r
Z,-at 5.',-f' nf d

9 _ Z [ f [ (f"f"; — fif)gb db de d2; (12.32)
J

at

SBoltzmann derived the H theorem in Wien. Ber., 66, 275 (1872). He obtained
the Maxwell distribution four years earlier in Wien Ber., 58, 517 (1868). Ter Haar
includes a careful discussion of implications of the H theorem in his book
Elements of Statistical Mechanics, Holt, Rinehart and Winston, Inc., New York,
1960, App. 1.

7H in the present context is unrelated to the Hamiltonian function that we
mentioned earlier.
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Using Eq. (12.32) to eliminate df,/dt from Eq. (12.31), we obtain

"H fof[(l—rlnf)()"f* f.£)gb db de d2, d,; (12.33)

after appropriate interchanges of integration and summation.
Finally, noting that (1 + Inf) can be regarded as a molecular
property ®;,, we can substitute Eq. (12.33) in Eq. (12.29) and obtain

t_ Y f[f/ (f’f’ f.f,)gb db de d<; d2
iJ

(12.39)

A moment’s reflection will reveal that the quantity [In (a/d)](a — d)
can only be positive, whatever values a and d might be given. The
quantity gb is also positive. It therefore follows from Eq. (12.34) that

It <0 (12.35)

Equation (12.35) is the substance of Boltzmann's H theorem. It
tells us that H displays a quality not unlike entropy in that both are
monotonic in time, although entropy increases. Like S, H tends to a
limiting value, but Eq. (12.30) or (12.30a) shows that this value is
negative instead of positive. We look further at the relation between
H and S later in this section. First, we must consider a difficulty in
our statement of the theorem.

When we discussed the statistics of a binary encounter, in the
course of deriving the Boltzmann equation, we incorporated the
principle of equal a priori probabilities® into the equation. This
approximation, as it turns out, does not seriously limit the useful-
ness of Boltzmann's equation, although it does tend to smooth out
the behavior that it predicts. Thus we might follow Huang? in con-
structing a plot such as is shown in Fig. 12.7.

Figure 12.7 compares the actual approach of a system to equi-
librium (as it is influenced by the small-scale fluctuations that re-
sult from collisions) with the approach to equilibrium predicted by
Eq. (12.33). We recognize that Eq. (12.33) includes the Boltzmann
equation and therefore includes the smoothing effect that entered
when we assumed molecular chaos to exist (footnote 8). Actually,
some of the local maxima represent points at which molecular chaos
is achieved momentarily. This is the case because (in accordance
with the H theorem) spontaneous microfluctuations, in a forward

8We take for granted that use of the principle of equal a priori probabilities
implies that a state of molecular chaos exists.

?K. Huang presents a searching discussion of these matters in Statistical
Mechanics, John Wiley & Sons, Inc., New York, 1963, chap. 4.
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H A

Fig. 12.7 Character of the approach to equilibrium.

=—— = = solution of the Boltzmann equation

/\/\/\'\/\ actual path toward equilibrium
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direction in time, can only carry a system to a lower value of H than
that which exists in the state of molecular chaos. However, another
gas in the same state, but with all molecular motions reversed,
would go to a lower H in forward time, as well. Since this would be
the way in which we might back up from the local maximum in
question, we see that if any points of perfect molecular chaos exist,
they must be local maxima.

The use of the idea of molecular chaos in Boltzmann's equation
eliminates the possibility of backward microfluctuations and resuits
in a smoothed curve (Fig. 12.7) that threads its way through these
local maxima.

Of course, as the size of the system under consideration is in-
creased, these fluctuations rapidly become too small to notice; but
they never vanish. To allege that they did vanish would be to open
the way for a variety of paradoxical difficulties. Consider, for ex-
ample, Poincaré’s theorem: A system having finite energy and con-
fined to a finite volume will, after a sufficiently long time, return to an
arbitrarily small neighborhood in phase space of almost an y initial state.
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This might at first seem to be blatant contradiction of the H theo-
rem, which implies that a system can only move irrevocably to
equilibrium. Actually the return to an initial state predicted by
Poincaré would have to be the result of a possible, but very unlikely,
fluctuation. If it is possible, it would also be inevitable, but only after
an unreasonable wait. We must therefore allow the microfluctuation
that would satisfy Poincaré’'s theorem even though we accept the
H theorem in the main. But such a fluctuation is not worth con-
sidering any more than is the likelihood of getting back to pure salt
and pepper in the example in Sec. 3.1.

Another paradoxis our apparent creation of a function H that is
irreversible in time out of a molecular model that is completely re-
versible. Here again, Fig. 12.7 provides the needed clarification.
The function H, although time-irreversible in the main, is actually
subject to minor reversals due to fluctuations. Only the use of
Boltzmann's equation in writing Eq. (12.33) led to an absolutely
irreversible approximation for H.

Nevertheless, it is a matter of great interest that the kinetic
theory has now exposed the microscopic origins of the time-
dependent quality of irreversibility — a quality that did not manifest
itself in the equilibrium situations described by statistical me-
chanics.

MAXWELL DISTRIBUTION
Equilibrium will be established when dH dt vanishes. In ac-
cordance with Eq. (12.34), this occurs either when

£\ _
In ( ; f,-) =0 (12.36)

or when
Fif';— Ff; =0 (12.36a)

and these conditions are clearly equivalent. Equation (12.36a) re-
sults in the right-hand side of Eq. (12.16) vanishing. This condition
[as we noted at Eq. (12.5)] should define the Maxwell distribution
function. Let us now show that this is the case.

Equation (12.36a) tells us that in equilibrium, collisions result in
no change of the distribution function. Expanding Eq. (12.36) we
obtain

Infi+Inf,=Infi+Inf;

This tells us that In f must be a collision invariant property.'” But a
collision invariant must in turn be a linear function of m, me, or

10We henceforth drop the subscriptsiand jin this section. Actually we could
just as well carry either subscript.
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me?/2, because they are the only quantities for which we have con-
servation principles. Thus

Inf = am + b-(mc) — ﬁ(”—;"—z) (12.37)

where a, b, and 8 are constants that must be evaluated. By com-
pleting the square we obtain '

Inf=Ina-— r%ﬁ (c — :::,)2 (12.37a)
where
In a=am + ”%‘?(E)z (12.38)
It follows that
_ _mB(. _ by
f=aexp I: > (c ﬁ) ] (12.39)

Equation (12.39) looks something like a Maxwell distribution
function, but we still must eliminate «, 3, and b in favor of the basic
macroscopic parameters: n or p/m, T, and ¢,. Three physical con-
straints serve to do this:

n -=] fdQ (12.40)
3 m R
> kT = Z_nj:; c2f d (12.41)
pCo =f mc;f d2 (12.42)
o

The substitution of Eq. (12.37a) in Eqgs. (12.40), (12.41), and (12.42)
leads, after straightfocrward manipulation (Problem 12.4), to

_ n(”“_ﬁ)“"’ (12.43)
2
== 2.34)
B=ir @.
b — Beo (12.48)

We note that the peculiar velocity C is equal to (¢ — ¢,) and we re-
turn to Eq. (12.39) with these constants. The result is the Maxwell

distribution:
m \32 mcC?
fi= n(erkT) exp (—-é-ﬁ) (2.43)
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H FUNCTION AND ENTROPY
In a single-component gas,

H=/ finfdQ =ninf

but when the gas is in equilibrium,
&) _ me
2rwkT 2kT

so if we compute the average of In f over C, we obtain

Tnf = 3 _my_
Inf=1Inn+ } I:In (ZTrkT) 1]

The equilibrium value of H is then

H, = n(ln n+3 [In (27%?) - 1]) (12.45)

Now let us compare this with the macroscopic expression for
the entropy of Ny moles of an ideal gas,

|nf=|nn+3|n(

S = {Ng(c,. -d; + R{,p';) + So (12.46)
But
dv dn 3k . Rk
- L | R
v n G 2m M m

so Eq. (12.46) can be rewritten as

S= Nuf--k-- (§d InT—dlIn n) +So (12.47)
m\2

Multiplying Eq. (12.45) by kV, adding it to Eq. (12.47), and noting
that NoN.. nis V, we obtain
| R . m
S = —kVH. 4 Vnklln (r2/n)y+Inn+¢|Inl;—)—1
™
+ constant;

or

.| 3Nok my _
S = —kVH. 4 l > ]:In (zwk) 1} + constant.]

The expression in braces does not depend upon the state of the gas.
Thus we finally obtain

= —kVH, 4 constant; (12.48)
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The equilibrium value of H is therefore a direct function of the
entropy. However, there are many limitations to making a very
broad interpretation of S in terms of H or vice versa. Entropy is de-
fined irrespective of any substance, but only for equilibrium. The
H function, on the other hand, is defined only for a very restrictive
molecular model (or “‘kinetic hypothesis™), but it is not limited to
equilibrium. Although the two can be related only for an equi-
librium ideal gas, there is still great value in the comparison. Both
serve as ‘‘time’s arrow’’ by pointing to a basic unidirectionality of
processes in time. Entropy does so by increasing between the equi-
librium end points that mark the beginning and end of an irre-
versible process. The H function does so by decreasing in the
direction of increasing time during the process.

EXAMPLE 12.3 Compare dH, /at with dS/dt in a monatomic ideal
gas that is being heated very slowly and uniformly.

Such a gas can be considered in quasistatic equilibrium. There-
fore, in accordance with the Sackur-Tetrode equation [Eq. (7.15a)],

as 34T 3knVvaT

at — 2T at ~ 2T ot
Combining this with Eq. (12.45) gives
aH. 3naT 1 4S8

at  2Tat kvt
which is consistent with Eq. (12.48).

FUNDAMENTAL
EQUATIONS OF
FLUID MECHANICS

In providing the means for obtaining the nonequilibrium dis-
tribution function from a detailed description of molecular be-
havior, the Boltzmann equation provides a basis for obtaining
the macroscopic equations of fluid mechanics. Not only can we
obtain the equations but we can also get the transport coefficients
that appear in them by applying the rules of averaging with the
distribution function.

GENERAL EQUATION OF
CHANGE OF MOLECULAR

PROPERTIES

Let us first obtain from the Boltzmann equation an equation for
the transport of those molecular properties that are conserved
during collisions — the so-called collision invariants W.(r, ¢, t). Todo



12.4 Fundamental Equations of Fluid Mechanics 355

this we multiply Eq. (12.16) by ¥; and integrate it over d2,. Then we
sum the result over the several components present,

):f af-ic. VMFﬁ)ds

dc
ff//\lx (f'if'; — fif)gb db de d2; d;

But [recall Eq. (12.27)] the right-hand side has to vanish, so
Zf L , + € Vfi + Fo g—i) d; =0 (12.49)

Equation (12.49) expresses the conservation of ¥; — mass, mo-
mentum, or energy — for a nonequilibrium gas. To put it in more
useful form we must next complete the indicated integrations by
interpreting them as appropriate averages. The first term, for ex-
ample, becomes

8f av; d — b‘l’;
: 2 A — Ny — n — ’
f\y o 4 [\Pf ds /f S 0% = 2 () — n S (12.50)

The second term becomes

f‘l&c,-\"f, dQ; = T’vf‘l’,c,f. dQ; — f fiV-(¥.c;) d2

= V-(n¥,c,) — nlc; V) (12.51)

To simplify the third term we must first recognize that F, is not
dependent upon velocity. Thus

Cimto
f\I'F L dQ = F, f\v af dQ; = F,-[(\m) —ff % d"]
Jc Jc; Cim —eo dc;

But f; vanishes as ¢, — «=. Thus
i af, v,
— ). = — Ly —
] ‘l"JFJ (’.IC,' d--t n.Fr (’}C,‘ (1252)

Combining Egs. (12.50), (12.51), and (12.52) in Eq. (12.49) we ob-
tain the general equation of change, or the Boltzmann conservation
equation:

| a ., - = E ) d‘lr' B
z," ]:(')f (nV) + V-(n i) — n.(? 1 C T‘PJ + Fi+ ac‘ ):l =)
(12.53)

Substitution of the appropriate WV, in the general equation of change
should then lead to the continuity, momentum, or energy equation.
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EXAMPLE 12.4 Suppose that a stationary, single-component gasis
spatially uniform. What additional conditions are implied?
The general equation of change becomes

9 — o v
ot M — G —nFoe =0
or
— dn o
‘I/"a—t —n '(—,}c =0

Now |zt us enter this equation with the three basic collision in-
variant guantities. First, for ¥ = m, the mass of the molecules,
we obtain

A
%:- =0 or p = p(r) = constant
C

and for v = mC, the momentum of the particles,
C :t = pF
and finally for ¥ = mC2 2, the kinetic energy of the particles,

-62 dp
c Jat 2oF
The last two conditions, when combined with the first, both give

F =0.

Thus a stationary single-component gas cannot be spatially
uniform unless it is free of body force fields, and its density (or
number density) must be constant in time as well as space. The
earth’'s atmosphere, for example, sustains a gravity body force, but
it must vary in density in the direction of the field.

CONTINUITY EQUATION
We now develop full statements of the three conservation
equations, beginning with continuity or conservation of mass. It
will help if we first restate and extend some definitions. First, the
partial and total densities p, and p are

pi=nm, and p=Dp = nm, (12.54)

The “diffusion velocity,'" or average peculiar velocity C,, no longer
vanishes in a multicomponent system as it did in a single-com-
ponent system:

A j R R (12.55)

The gross velocity ¢, is defined with respect to the entire system,

e =Y pich == 3 i (12.56)
p T

P
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so Eq. (12.55) becomes

Ci=c—c (2.23a)

The mass flux of the jth component across a surface moving at a
velocity ¢y in the gas is

3, = f m.C.f, d2 = p(c, — €o) (12.57)

J..; thus does not vanish. The total mass flux with respect to ¢,

ZJ,;.-!- = z pi(c, — €o) = pCo — pCo = 0
of course does vanish.

The first statement of conservation of mass that we wish to
extract from Eq. (12.53) is the so-called global continuity equation, or

simultaneous conservation of all species. We begin by writing Eq.
(12.53) for v = m:

anm) ooy (aﬂ R aﬂ):l_
ZI: ot b V(nimic)) — n; : c.-vm; + F; ac. =0

The last term in this expression is zero, and the first two terms be-
come the global continuity equation

5
;,{thr + \'-Zr_ pi€o =0

or

:f + V-pco =0 (12.58)
This is the conventional continuity equation. It is global in the sense
that it applies to properties that have been averaged over all
species.

An expression of continuity of the component molecular
species can also be established. To do so we must first show that
for v, = m,, the ith termsin Eq. (12.49) vanish identically. This proof
is left as an exercise (Problem 12.5). It follows that the derivation of
Eq. (12.58) can be repeated without carrying the summation sigr
and

A -
2 Y.pic =10 (12.59)
dt

Equation (12.58) is the conventional continuity equation, and it
shows that the processes of averaging that we used to eliminate the

distribution function have yielded the gross mass relationship that
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we would anticipate. Equation (12.59) is interesting in that it shows
that the same conservation law must also be satisfied for each com-
ponent. It can also be cast in the form (Problem 12.6)

Dp: .

Dt + (V- +0iV-c) =0 (12.60)
where D Dt is the substantial derivative. Thus we find that the in-
crease of the density of a moving particle at a point is balanced by
the divergence of the mass flux at that point and a dilational effect.

If a chemical reaction takes place in a gas mixture, then a
rate-of-creation-of-species term r, (equal to the mass of the jth
component created per unit volume per unit time), must be added
to Eq. (12.59) to balance the equation,

9p
at

4 Ve =1 (12.61)
Summing Eq. (12.61) over all components results in
2 =0 (12.62)

because the left-hand side sums to Eq. (12.58). Equation (12.62) is
just the stoichiometric equation for the chemical reaction.

CONSERVATION OF
MOMENTUM

Now let us return to the general equation of change [Eq. (12.53)]
and obtain the macroscopic equation for the conservation of mo-
mentum. This time WV, = m.c,.. The five terms in the equation must
be simplified into tractable form. The first term becomes

d ., dpcy
Z‘ at (M€ = 44

'
The second term is more complicated,"'

Z\'-[n,m,(b"- b Cn)(c_ ‘-;-:-r)J = V(Z n.m.C.C, + EZ ”-m:br.cll
+ Z nlmlclJClF)
= V- (Z p‘.érc, -4 201; Z J"". T ng;Cu)

The sum >_ J,. is zero as long as there are no chemical reactions,
-

(12.63)

and cic, and C,C, must be recognized as a dyadic whose array

11Qur vector and tensor notation in this section follows that of J. O.
Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and
Liquids, John Wiley and Sons Inc., New York, 1954; and of Chapman and
Cowling, footnote 4.
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is a second-order tensor. In fact, p.C,C; is the stress tensor, py
[recall Eq. (2.29)], or the momentum flux, J,... Hence the second
term reduces to

2.V [p(C: + €o)(C, + ¢o)] = v-[Z Pui; + pCoCo] (12.64)

The third and fourth terms vanish because ¥, (or m.c;) is indepen-
dent of r and ¢, and the fifth term becomes

H(miC:)
F. ac,

Equations (12.63), (12.64), and (12.65) can then be substituted
back into Eq. (12.53). The result is

5
Z [((B:;O) + V-pu, + V-(pCoCy) — nim F:I =0

= m.F; (12.65)

or

]
(ﬁa_(io &f) + V-pu + p(€o- V)€ + €o(V-pCo) — ZD:F =0

Equation (12.58), the global continuity statement, can be used to
eliminate two terms from this equation. The resultis

o %5;’ = —Rfopi - Z oiF, (12.66)

Equation (12.66) is the basis for the Navier-Stokes equation of
motion of a viscous fluid, but the stress term has not yet been
expressed in terms of rates of strain — of fluid velocities. We know
from a strictly continuum derivation of the Navier-Stokes equa-
tion that

duy 2
—_— =¥t — kY- k =
J,‘J 2u Jxi + 3 uV-Co KV - Co !

du dui

!\_#(OX{ +BX,.) il

In the continuum derivation, the shear and bulk coefficients of
viscosity, u and «, have to be obtained from physical measure-
ments. The bulk coefficient characterizes the resistance of a fluid
to a pure dilational motion — the motion of the fluid within a balloon
when the exterior pressure is reduced, for example. It assumes im-
portance only in cases of very rapid dilations, such as might occur
in a shock wave, and it is often ignored.

In the microscopic derivation we must remember that the term
Vv p. was obtained from Eq. (12.51), which included the integration
of f. Once f, has been obtained — not an easy task — this integra-

Pu = (126?)
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tion can be carried out. The result will include the transport co-
efficients explicitly and clarify such rnatters as the relative im-
portance of «.

CONSERVATION OF ENERGY
Finally, we write Eq. (12.53) in terms of the remaining collision
invariant energy. In this case ¥, = m,C.2/2. The first term in Eq.

(12.53) is then

d d
Zar (n, 2 G ) 6t('OE) (12.63)
where E is the kinetic energy per unit mass in the fluid. The second

termis
> (n,—-C .;) - v-Z 02T, + v X0 P ERe
= V-Je + V-pEcy (12.69)

where J; is the flux of kinetic energy consistent with Eq. (2.26).
The third term vanishes because C, is independent of t. The
fourth term is a little more complicated:

2. ne.¥ (r121 C.z) = 2~ nimic;-Ci- V(c; — co)
- 2_ nmjfc.-(C.- V&) — ¢;-(Ci-Veo)]

The first term on the right-hand side of this equation vanishes be-
cause ¢, is independent of r, and we are left with

Z nJCr‘-({;I C;z) = —Z n.m;t‘-(cr- "Ctl) = — Jam - VECo

(12.70)

The symbol: denotes a tensor product defined as follows in Einstein
and summational notation, respectively:

J Ve = p;” Z Z (']UL

The fifth term is

Zmn%(?aq=zmmnE=ZR¢u (12.71)
i ag; i i

Combining Eqgs. (12.68), (12.69), (12.70), and (12.71) in Eq. (12.53),
we obtain the energy equation,

(;; (pE) + V-(pECy) + V-Jr + pus: Veo — Z Fi-d, =0
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The first two terms can be combined into a substantial derivative by
addition of the global continuity equation. Then

DE
? Dt

— T -

—Vde — puiVer + 2 Fidn (12.72)

unsteady and conduction dissipation work done
convection term term by external
term forces

Under each of the terms in Eq. (12.72) is a description of its
physical meaning. The left-hand term, written as a substantial
derivative, shows the change of energy of an element of the gas as
itmoves. The right-hand side shows the three basic effects that give
rise to this change. The first is heat conduction into or out of the
element. The second is the result of viscous dissipation of mechani-
cal flow energy and should always contribute positively to the right-
hand side. The third is external work done upon the fluid.

If we accept the empirical relation J; = —AVT, Fourier's law,
for the moment, and if we take E = ¢ (T — T..), then Eq. (12.72) for
a single- component incompressible fluid becomes

pc..%— = AV2T — dissipation
But for an incompressible fluid ¢, = ¢, = ¢, so that if we ignore
dissipation and introduce the thermal diffusivity'2 a = \/pc then

=20 _ower (12.73)

If the fluid is stationary, Eq. (12.73) further reduces to the equa-
tion for heat conduction in a solid:

1aT ,
s 0 (12.78)
Like the Navier-Stokes equation, this result can only be con-
sidered valid if solution of the Boltzmann integrodifferential equa-
tion gives a distribution function that yields the correct transport
coefficients. It turns out that Fourier’s law with constant thermal
conductivity, or Newton's law of shear with a constant viscosity co-
efficient, are only valid results when deviations from equilibrium
are comparatively small. In a few highly nonequilibrium situations,
such asin flow through a shock wave, Boltzmann's equation shows
these relations to be quite inaccurate. Equations (12.66) and (12.72)
do not include these transport laws and are general, however.

12The thermal diffusivity is actually defined as A/sc,. The development of an
explanation as to why this is true is left as an exercise (Problem 12.7).
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ON SOLVING THE
BOLTZMANN
EQUATION

We have extracted a good deal of material from Boltzmann’s
equation thus far without really solving it — without evaluating its
dependent variable f.. By and large, the kind of solutions that must
be undertaken to solve today's important problems in nonequi-
librium gas dynamics are both sophisticated and laborious in the
extreme. They are also approximate in all cases.

Our task in this section is to show the direction of thinking re-
quired to arrive at a solution. We set up some of the better known
approximations and obtain results from them, but we only present
a small beginning of a very large subject.

COLLISIONS AND THE
COLLISION INTEGRAL

The collision term (df./dt)..n represents the influence of colli-
sions in altering the time rate of change of the distribution function
of a fluid element. If collisions are frequent it is large, and as the
frequency approaches zero it vanishes.

Enskog perceived, in 1917, that this fact could be the starting
point for a successive approximation method for solving Boltz-
mann's equation.'> We begin our considerations by looking at the
influence of collisions on the collision integral in the way Enskog did.

The Boltzmann equation (12.16) can first be written in the form

(ﬂ) =2 JFf) (12.75)
8t coll I

where we have summarized the lengthy integrals on the right-hand
side with the notation J(f.f;). We then consider a quantity e which we
wish to introduce as a perturbation parameter. When the number
of collisions is large ¢ (as well as the period r between collisions) is
small. When the number of collisions is small, ¢ (and r) become
large.

As the number of collisions decreases to zero, the right-hand
side of Eq. (12.75) disappears and an equilibrium situation is ulti-
mately established. When the number is large, on the other hand,
any nonequilibrium f; will very rapidly “relax’’ to an equilibrium
value f;'%,

3Enskog’s solution is discussed by J. O. Hirschfelder, C. F. Curtiss, and R. B.
Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons, Inc., New
York, 1954, sec. 7-3-b; and by S. Chapman and T. G. Cowling, The Mathematical
Theory of Non-Uniform Gases, Cambridge University Press, New York, 1952,
chap. 7.
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The preceding considerations suggest that we might scale time
in the Boltzmann equation, such that it always will correspond
with the same rate of collisions, by introducing t' = ¢t. Thus

(%) = -1-2_ JEf) (12.76)
C coll €

Next we note that the distribution function f, should depend upon ¢
which, as we can now see, denotes the extent of the deviation from
equilibrium. Thus

| 2f| 2
f:(cfr r, t!r E) = (;(C[, r t’r 0) + %" €+ g ):J‘ < +--- (12‘??)
aé|t+0 (}E" e=() 2!
or
fi = £i0 4 efi) 4 2D 4. (12.77a)

where f,'" should turn out to be the equilibrium, or Maxwell, dis-
tribution function, 'V, is (df. d¢)._o, and so on.

We defer a consideration of Enskog's successive approxima-
tion method until we have first looked at a simpler approximate
solution suggested by Eqs. (12.76) and (12.77a).

SIMPLE LINEAR
APPROXIMATION TO THE
BOLTZMANN EQUATION

Equation (12.77) can be recast in the form

. 0y
[(if_r) ] _fi= f© (12.77b)
e Jeont le-o €

for situations in which deviations from equilibrium are small. But e
is a quantity that increases with the period 7 between collisions. We
therefore make an assumption that takes a roughly <imilar form,

of; fi — f\®
(at )ﬂ,.] N (12.78)
The right-hand side is now negative because, while f, — £,V in-
creases with ¢, it must decrease with time to satisfy the H theorem.
This says that the total rate of change of the distribution function
will be proportional to the deviation from equilibrium at any instant
and that r is the appropriate time constant for the change.

Equation (12.78) is then the approximate form of Boltzmann's
equation that we wish to solve. The right-hand side replaces the
complicated collision term, and indeed it does properly char-
acterize the influence of collisions.

By way of testing Eq. (12.78), let us consider a steady shear flow
in a single-component, almost-Maxwellian gas without body forces.
We suppose that there is a gross velocity distribution uy = uy(y).
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The deviation from equilibrium is small because the right-hand side
of the equation contributes little and the degree of approximation
is slight. Let us seek to compute the viscosity for this case.
The full form of Eq. (12.78) for this case reduces to
af
kTS 0
TV 3y f—f (12.79)
where we are using the velocity notation that was set up in the con-
text of Eq. (2.23). We can approximate (df dy) by (9f % du)(du ay),
where u = U -+ uy(y). But ¥ depends only on U, V, W —not on y or
up— and u depends on y only through w,. Thus af ay ~ (af» al)
X (duo/'dy). Furthermore, vis equal to Vin this case, so Eq. (12.79)
takes the form
dug of W
f=Ff047V— — 12.
+ 7 dy aU (12.80)
where the equilibrium distribution f will be the Maxwell velocity
distribution,

» - .._m_)” I:_'I’_(Uf.i‘.V%..."‘..Wf)]
£ ”(u exp KT (&48)

We can now write the shear stress p,. in accordance with Egs.
(2.28) and (1.51) as

dUu
— = - VUf dQ 12.81
“dy mf ( )
The first term on the right-hand side of equation (12.80), f, does
not contribute to the shear stress, and the velocity gradient can be
divided out. Equation (12.81) then simplifies to

= — erfm )
w=—m| U= do (12.82)

Now suppose we approximate r(c) with a suitable mean period ob-
tained from the Maxwell distribution [recall Eqg. (12.22)],

. wé (12.83)

When we factor this out of Eqg. (12.82) and complete the indicated
integrations we obtain [Problem (12.10)]

VZ
I -mncf

but C* ~ (8 m)V2, the Maxwell distribution value, so

u~=plC (12.84)
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Equation (12.84) reveals exactly the same dependence of x upon
physical parameters that we obtained in Eq. (11.7) as a conse-
quence of mean-free-path arguments. The constant =8 would
correspond with a value of « = 0.785, which is a little low if we con-
sider the persistence of velocities.

This simple result emphasizes the following point: The terrible
complications of the Boltzmann equation can be fairly accurately
simplified when deviations from equilibrium are not great. For-
tunately, many physical processes in gases deviate only a little
from equilibrium because the gross fluid motions are much slower
than molecular motions. In the subsequent subsection we see how
Enskog treated small deviations from equilibrium in a more formal
way. The result is a solution that can be applied very broadly to
problems of practical interest.

ENSKOG'S SUCCESSIVE-
APPROXIMATION METHOD

We begin by substituting the series expansion for f;, Eq. (12.77a),
into Eq. (12.76). The result will be an equation in terms containing
the factorse’, €', €2, €%, . . . . Collecting coefficients of like powers of ¢,
we obtain for €,

0 Z JOF O, ) (12.85)
for €',

(‘{"'ftff)l = 2 HFOKD) + KOO (12.86)

at’

for ¢2,

(%F;Th)m“ - ZI (J(FOF,2) + J(FVFD) + J(F2F,0)] (12.87)
and so forth (see Problem 12.11).

Equation (12.85) must be satisfied for all ¢, no matter how small.
That is because it is the equilibrium condition and its solution f,'*
as we saw in Sec. 12.3, is the Maxwell distribution. For larger depar-
tures from equilibrium — for larger e — the terms in e must be re-
tained and Eq. (12.86) must be solved for f;'"’. And f,'" will correct f,
for small deviations from equilibrium. It is then possible — at least
in principle — to return to Eq. (12.87) with £, and f, " and calculate
the next correction, f,'?. Additional equations would correct f;
further, adding one term to the series (12.77a) each time.

The solution to Eq. (12.85) has already been obtained in Sec.
12.3. The result for £, is the Maxwell distribution in form; but, be-
cause of the nonequilibrium constraints that it must satisfy, it
actually differs slightly from the Maxwell distribution. The full dis-
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tribution function f, for nonequilibrium must satisfy three con-
straints: the conservation of particles,

f}_ fi dQ; = ny(r, t) (12.88)

the conservation of momentum,

)

2 m f cifi d2 = p(r, t)eo(r, 1) (12.89)
and the conservation of thermal energy,

12 m f C.2f. dQ = 2 nkT(r, t) (12.90)

[y

[Recall Egs. (12.40), (12.41), and (12.42).]
But £,/ alone satisfies each of these. Thus we require that

f fnd =0 r=0 (12.91)
2 m f cfmd2 =0 r=0 (12.92)

and
] Z m,/ C2ndd =0 r##0 (12.93)

It follows that the r and t dependence of n, p, ¢y, and T must be
carried into f;'9. Thus the equilibrium solution should actually be

mi 32 m‘cr:
R P I I e I

where C; = ¢, — cy(r, t).

Equation (12.94) is thus a space- and time-dependent variation
on the Maxwell distribution. It shows us that when deviations from
equilibrium are slight (or when gradients and time derivatives of
n., €o, and T are small), the velocity distribution is locally Maxwellian.

It is this feature of ideal-gas behavior that allowed Maxwell to
develop a barometric formula by considering the atmosphere to be
isothermal and locally Maxwellian. We have already suggested that
this is possible in Examples 3.2 and 12.1 and Problem 5.13. Problems
12.8 and 12.9 outline a more satisfactory derivation in the light of
Eq. (12.94).

The second approximation to f; is obtained by writing

f] D= f Uj(r- c;, t)¢a(r, ci, r) (12.95)
SO
fr == frlU}(l —i' E¢I) (12-96)
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Substitution of this result in Eq. (12.86) gives!* (Problem 12.15)

afi @ af>
T + ¢ Vi + Fo——

- E [ff f1Of,0(¢'; — — ¢ — ¢,)gb db de d?; (12.97)

where not only is t’ scaled so that t' = ¢t, but so, too, are the time
dimensions in ¢; and F,. Equation (12.97), of course, can be re-
written as

[}
(af ” E[f/rogo(@: b et — eds — ety)gh db de d2,

(12.97a)

Our objective is now to solve Eq. (12.97a) for ¢, subject to the con-
straints (12.91), (12.92), and (12.93).

Equation (12.97) is an integral equation in ¢,, and solving itis a
complicated business. The method outlined by Hirschfelder,
Curtiss, and Bird's involves mathematical tools that are not at the
immediate disposal of many technical people. We must therefore
be content merely to write down the results of the computation,
and to point out some qualitative ramifications of it. The solution
for e¢. takes the form

-
e =—Q-VINT—®:Vey+n y_e/-d, (12.98)
i

where

Y i _ pi) o _ PP e E
d._v(n)+(n p)vlnp pp(m"'-‘ ;‘,njr,) (12.99)

e
and @,, (5, and @,/ are complicated functions of n,, T, and cy.

TRANSPORT OF MASS,
MOMENTUM, AND ENERGY

The mass flux, J,,, or p,C, is calculated as follows:
p.C: - [m,Cfd“xmef”(l - ) d€;

The resultant diffusion velocity then takes the form

C = -FZm Dyd,— D7 VInT (12.100)
P Pi

4The symbol ¢ is serving here to designate both the angular coordinate in a
molecular impact and the perturbation parameter. The meaning is clear in
context, so we carry the double notation.

5See footnote 13.
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where D;; and D/” are diffusion coefficients that depend upon n,, T,
and co. If we disallow any gradients of pressure or temperature,
then this result reduces to Fick’s law and D, is the same diffusion
coefficient that we discussed in chapter 11.

By the same token, the energy flux is

9=—NVT+3kTD. n,C,— nkT Y. L D7d;  (12.101)
i i Pj

where
N = X + function of D,”’s and D,;'s (12.102)

The added function in Eq. (12.102) is small, but it points to a curious
interlinking between mass and heat diffusion. Let us consider this
further.

If we impose a temperature gradient on an isobaric, homoge-
neous mixture of gases, there will be a flow of heat [in accordance
with Eq. (12.101) or in accordance with common sense]. But Eq.
(12.100) reveals that there will also be a flow of mass given by
p.C; = =DV In T, where D7 is the so-called coefficient of thermal
diffusion. Of course, once mass diffusion begins, the flow of heat is
altered by the second term on the right-hand side of Eq. (12.102) and
by a concentration-gradient effect that enters through d..

The same kind of complications would result if we imposed a
concentration gradient on an initially isothermal mixture. We would
once again find that q and ».C, were necessarily interrelated in a
mixture. This coupling of fluxes was predicted analytically before it
was identified experimentally. More recently it has become the
major subject of study in the comparatively new subject of irrevers-
ible thermodynamics.

Finally, itis possible to write the flux of momentum — the stress
tensor p;; at a point — as

o= —2_ mjj C,Cf, do;

dco; 000; 2
~ aco; , dco) | 5 12.1
Pdwi '”(OX;; ) Ox:) t 3 1wV Codu L)

where & is the Kronecker delta and 4 is another coefficient, which
we recognize as the viscosity.

Equation (12.103) is very nearly Equation (12.67). It differs only in
that «, the bulk coefficient of viscosity, is absent. Thus the second
approximation to f, has yielded a form of the Navier-Stokes stress
tensor that is known to give good results in all but the most extreme
deviations from equilibrium. If the bulk coefficient of viscosity, «, is
to exert any influence it can only do so in a gas that suffers large
deviations from equilibrium.
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Subsequent analytical work has shed more light on this and
other matters related to very strong deviations from equilibrium.
Much of this work has been directed toward calculating f; 2. More
fruitful than this have been a variety of entirely different techniques
for approximating and solving the Boltzmann equation. These
matters are well beyond the scope of this introduction, however.

Problems 12.1 Derive Eqgs. (12.7), (12.8), and (12.9).

12.2 Verify Eq. (12.12).

12.3 Verify Eq. (12.19).

12.4 Verify Egs. (12.43), (2.34), and (12.44).

12.5 Prove that the terms in the summation (12.49) vanish iden-
tically when W, = m,, and that Eq. (12.59) follows.

12.6 Verify Eq. (12.60).

12.7 The thermal diffusivity a is defined as A\ pc, for com-
pressible flow — not as A\ pc., as the text above Eq. (12.73) might
imply. To explain why this is true, first add Dp Dt to both sides of
Eq. (12.72) and simplify the equation. Then reduce the result to an
equivalent form of Eq. (12.73). Discuss.

12.8 Consider an isothermal single component Maxwellian gas
at rest in a force field [i.e., F = F(r)]. In this case, the distribution
function f will be unchanged from that obtained for F = 0, except
that n = n(r). Write the appropriate form of the Boltzmann integro-
differential equation for this case and insert the space-dependent
f " in it. Solve this result for n(r) and obtain from it

) e[ (3529
= Mo\omk7) ©*P 2kT T kT

in which U(r) is the potential of the force field defined by F = — VU
and n(r) = ny, for U —0.

12.9 Obtain distribution functions and the density p(r) using the
result of Problem 12.8 (cf. Examples 3.2 and 12.1 and Problem 5.13)
(a) for the earth’s isothermal atmosphere, and (b) for a Maxwellian
gas in an isothermal centrifuge with angular velocity, . (Note that f
will depend upon both C and C, = wr.)

12.10 Complete all the missing steps in the derivation leading to
Eq. (12.84).

12.11 Obtain Egs. (12.85), (12.86), and (12.87) and one more
equation for the coefficients of ¢,

12.12 A flat disk of unit area is placed in a dilute gas at rest with
initial temperature T. Face A of the disk is at temperature T and
face B is at temperature T; > T. Molecules striking face A reflect
elastically. Molecules striking face B are absorbed by the disk only
to reemerge from the same face with a Maxwellian distribution of
temperature T,.
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(a) Assume that the mean free path in the gas is much
smaller than the dimension of the disk. Present an
argument to show that after a few collision times the
gas can be described by the fluid mechanical equa-
tions, with face B replaced by a boundary condition
for the temperature.

(b) Write down the first-order fluid mechanical equations
for (a), neglecting the flow of the gas. Show that there
is no net force acting on the disk.

(c) Assume that the mean free path is much larger than
the dimensions of the disk, and find the net force
acting on the disk.

12.13 Show that the Boltzmann equation for a gas of relatively
low molecular mass interacting with a gas of very heavy molecules
may be obtained as

of
(—) = n;;/(f’ — f)g:;b db de
at/ e

where ny is the number density of heavy molecules. Indicate all
assumptions made.

12.14 A dilute gas, infinite in extent and composed of charged
molecules, each of charge e and mass m, comes to equilibrium in an
infinite lattice of fixed ions. In the absence of an external electric
field the equilibrium distribution function is

2rkT\3? mc?
0 - : -
fU(c) n( m ) exp( RT)

where nand T are constants. A weak uniform electric field Eis then
turned on, leading to a new equilibrium distribution function. As-
sume that Eq. (12.79) adequately takes into account the effect of
collisions among molecules and between molecules and lattice.
Calculate (a) the new equilibrium distribution function f to the first
order, and (b) the electric conductivity » defined by the relation
nec = oE.

12.15 Verify Eq. (12.97a).

12.16 One of the first things that students of viscous flow learn is
that symmetry of the stress tensor requires any shear stress in the
horizontal plane to be balanced bya shear in the vertical plane.
Thus the shear r,. in a simple Couette or Poiseuille flow must be
balanced by a r.,. Explain this balance using an argument based
upon the microscopic behavior of an ideal gas. Derive a quantitative
expression for r., and compare it with the microscopic expression
for r,..
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The numerical evaluation of n! is a seriously complicated task when
n becomes large. The development of a convenient approximation
for n! is an absolute necessity when n approaches numbers on the
order of Avogadro's number.

The gamma function I'(n + 1) provides a closed-form ex-
pression that helps us to make such an approximation:

[+ 1) f — (A1)
(1]
Equation (A.1) can be integrated by parts using

d(t'er) = e (nt ! dt) — t(e ' dt)
so that

I(n + 1) = —(te o + nj Cpole dt

The first term on the right-hand side vanishes and the integral is
I'(n). Thus
I'(n + 1) = n'(n)
371
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Stirling's approximation
It follows by induction that
nl=1I(h+1 (A.2)

The gamma function therefore provides the means by which we
can write n! as an integral. Under the change of variable x = t n,
Egs.(A.1)and (A.2) give

n! = n'l-"[l x'e e dx (A.3)
i

The integral in Eq. (A.3) can be simplified in the following approxi-
mate way. First divide the integral

. > .
n'l‘[.[ e iy dx = n'."fe " [[ eﬂfl—.\""lnx]dx 4 f gy I-1n x dx:l
0 0 2

(A.9)

and note that, since (x — 1 — In x) > 0.306, the second integral on
the right-hand side will be negligible for large n. Furthermore, em-
ploy the change of variable, x = 1 + ¢, where —1 < e < 1, in the first
integral on the right-hand side. Under this transformation, and the
series expansion

[

€
In(1 + e);e----E 3o

Eq. (A.4) permits us to write Eq. (A.3) as
I
n! ~ pitla ar/ e("‘l’“ 2+¢? “_-"]d{
I

Once more we observe that, for large n, ¢ 2 contributes far
more than any subsequent term. Accordingly,

| [
3 2 . n
I ~ pn+l n ~€'n 2 ~ putl " / ~€*n/2 e
n! ~nle /re de > ntle \'nf..,\e d(f'Jz )

| - .
Pl g \.’2: ~\2mn (2) (A.5)

or

or
Inn!~(m+Hinn—n+1InE@r (A.5a)

Equation (A.5) is the lead term in Stirling's series.! The next

'See, for example, E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis, 4th ed., Cambridge University Press, New York, 1963, sec. 12.33.
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term is on the order of (1/12n) times the first term and is thus com-
pletely negligible for large n. Indeed, Eq. (A.5) can be even further
simplified for large n,

Inn!l~nlnn—n (A.6)

Equation (A.6) is the expression we usually designate as Stirling's
approximation and which we have most occasion to use subsequent-
ly. Figure A.1 shows the percentage error of the approximation
for insufficiently large n. It is interesting to note that, although the
percentage error drops, the absolute error In n! — (n In n — n), in-
creases monotonically with n. The error in Eq. (A.5a) is, of course,
far less than this.

Problem A.1 Plot, against n, the error of Eq. (A.5a) and the error of

In n! ~n In n, as well as the error of Eq. (A.6). Discuss the results.

Fig. A.1 Percent error in Stirling's approximation, for low n.
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Laoranee’s method
grang .
of undetermined

appendix B multipliers

Suppose we wish to maximize or minimize a function of several
variables, P(Xi, X2, ..., X,). P might be the power output of an
engine, the cost of manufacturing a device, or perhaps the amount
of material required in a product. Let us also suppose that Pis a
continuous function and that it has derivatives. It is necessary that
the derivative of P with respect to any of its independent vari-
ables be zero when it is maximum. Thus

1] 6
ap 0= Pux (B.1)
i=1 (.}Xj
In general, the function P(Xi, Xz, . . . , X,) relates to some physi-
cal device or system. The variables, X1, Xa, ..., X., characterize the

device (that is, its length, width, area, thickness, etc.) and are not
all independent. There will usually exist certain equations, called
constraints, which relate some or all of these variables to one an-
other. The constraints can be written in the form

YilX, X2y .., X)) =0
Ya( X1, X2, ooy X)) = 0

(B.2)

¢”-‘(Xil X:s + .y Xn) =0
375
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Lagrange's method of undetermined multipliers

If m represents the number of equations of constraint and n
represents the number of independent variables (the X,'s), then
the number of “‘degrees of freedom' isn — m. If n = m, there is
no freedom; all the variables are determined and P can have but
one value. When m < n, the freedom can be used to select some of
the variables in such a way as to maximize or minimize P.

Only n — m of the dX.’s in Eq. (B.1) can be varied arbitrarily; the
remaining m of them must be varied in such a way as to satisfy the
differential form of the equations of constraint (B.2),

d,=0=2Migw, i-12....m (B.3)
i=10X,

Rather than try to decide which m of these dX,’s should be de-
pendent and which n — m of them should be independent, we shall
use a method invented by Lagrange for this kind of problem.
Lagrange's method consists of introducing arbitrary functions,
A, A2, ..., A, as follows:

We multiply dy1 by A1, d2 by X>, and so on, so that

9P
; oy, AXi =0 (B.1)

n a¢,]
Al ; 3x, @Xi =0

(B.4)
a%lﬂ .
A ; oy X =0

The \'s, which we call Lagrangian multipliers, are arbitrary func-
tions of the X.'s, which can be assigned as we please. Adding Egs.
(B.1) and (B.4) gives

=~ (AP g I
—~ +t Mo+ Ao ) dX =0 B.
;(ax,- Fhgx, Tt A aX.-)d (B-5)
The multipliers, Ar, A2, ..., \,, have to be chosen so that the

parentheses will be zero for every dX,. We therefore obtain n equa-
tions of the form

GP (’}ii/i E’J"w 8

L Rl gy, e =1,2,..., B.6

ax, T Max, ax, 0 n (B85

Since we have n equations involving the m unknown \’s, we can

solve for these A’s using m equations and substitute the A's in the
n— m remaining equations. These n — m equations plus the origi-
nal m equations give us n equations, which will be sufficient to
determine the n values of X, which define P,...
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Lagrange’'s method of undetermined multipliers may be sum-
marized as follows:

1. Write down the differential of the function, and equate it to
zero.

2. Take the differential of each equation of constraint, and
multiply by as many different Lagrangian multipliers as there are
equations of constraint.

3. Add all the equations, factoring the sum so that each differ-
ential appears only once.

4. Equate the coefficient of each differential to zero.

5. Solve for the m values of A..

6. Substitute these \.'s in the n differential coefficients and
solve for the n maximizing values of X..

EXAMPLE B.1 Maximize the function, P(x, y, z) = 8xyz, subject to
the constraint Yi(x, y, 2) = x> + y? + 22— 1=0.(n = 3andm = 1.)

Stepl: dP = 8yzdx + 8xzdy + 8xydz =0
Step2: A dy = 2\xdx + 2\ iy dy + 2\izdz =0
Step 3: (8yz + 2M\1x) dx + (8xz + 2\1y) dy + (8xy + 2M\iz) dz = 0
Step 4: 8yz + 2\ix = 0; 8xz + 2Ny = 0; 8xy +2\Miz = 0
Step5: N = —dyz/x = —dxz/y = —4xy/z
Step 6: 8yz — 8x2z y = 0; therefore, y = x
8xz — 8xy? 'z = 0; therefore, z = y
8xy — 8yz2'x = 0; therefore, x = 2

Thus

i N—— 1
V3

Thus we have shown that 8xyz is maximal, subject to the require-
mentx2 4+ y2 4+ 22 =1, whenx =y =2z=1/\3.
Finally,

Problems B.l Metal cans of volume V = V, are made by welding a top

and bottom on a cylinder of length L and diameter D. The cylinder
has one vertical seam. Metal costs C, cents ft2 and weld costs
C, cents ft. (a) Find the L D that gives minimum area, and (b) find
the relation between L and D for minimum cost.

B.2 Sketch a geometrical interpretation of the example prob-
lem. Discuss your interpretation fully.
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appendix C system‘

The Sturm-Liouville system includes all linear, second-order,
ordinary differential equations with two homogeneous boundary
conditions. A great deal can be said about the solutions to this
system without actually solving it. The system is

d dX
el y = C.1
A0 %] + 10 + i - 0 (1)
with boundary conditions
dx
c1X(a) + c2 d;L . =0 (C.2)

dX
c3X(b) + o'l

Before stating the theorems governing the solutions X = X(x)
of this system we must develop the concept of orthogonality of
functions.

=0

1See, for example, R. V. Churchill, Fourier Series and Boundary Value Problems,
McGraw-Hill, Inc., New York, 1941, chap. lll. See also G. Birkhoff and G. (i
Rota, Ordinary Differential Equations, Ginn & Company, Boston, 1962, chap. X.

379



380 appendix C Sturm- Liouville system

ORTHOGONAL FUNCTIONS
Two vectors, A = (aj, a2, ...,a,...,a) and B = (bi, ba, ...,
b, ..., b,), are orthogonal if their dot product vanishes:

H

AB=) ab =0

i=1

Now let us consider a set of mutually orthogonal vectors: A;, As,

., A, .... We normalize the set, where normalization means re-
duction of the set to a new set of unit vectors, @,:
&b, = __A_"’
" A
The set, ®,, @, ..., ®,, ..., iscalled an orthonormal set. It has the

property that
D, D, =D 4,6, = b (C.3)

where the ¢'s are the components and 4, is the Kronecker delta. A
typical example of an orthonormal set is given by the three Carte-
sian unit vectors, i, j, k.

A vector f in the multidimensional vector space described by
Py, @, ..., can always be expressed as a linear combination of
these unit vectors:

f=Cid+ Coy 4+ Cb, 4 (C.49)

The Cartesian position vector, r = ix + jy + kz, is an example
of a vector expressed as linear combination of a set of orthonormal
vectors. It follows from Eq. (C.4) that we can write

f-@, =C, (C.5)
or

f = Z (f- ), (C.6)

Equation (C.6) is called an expansion of f in the @,

Now let us suppose that each of a set of functions $,(x) is con-
sidered to be a vector in the infinite space that is formed by regard-
ing the value of ®,(x) at each point in the interval [a, b] as being a
component. Then if for any two such functions

'/.J: d;}_l(x)f]‘m(x} dx = Grm (C?)

the functions ®,(x) are called orthonormal by analogy with Eq. (C.3).
The integral in Eq. (C.7) is, of course, the appropriate extension of
the summation, D ¢, ¢, , in Eq. (C.3).
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It follows that we should be able to express any well-behaved
function f(x) — that is to say, some other ‘“vector’” in the same
infinite space — as a linear function of the *‘vectors’ in the ortho-
normal set. Thus

f(x) = Cii(x) + Coba(x) +- -+ Cubulx) +- -

Then the appropriate extensions of Egs. (C.5) and (C.6) are

C = f ’ f(x)®.(x) dx

and

f(x) = 3 b,(x) f " KOD.) de (C.8)

The restrictions upon the expansion (C.8) are that the function
f(x) be “‘well behaved' 'and that the functions ®,(x) be ‘“‘complete.” A
treatment of the attributes “‘well behaved' and ‘“complete' is far
beyond the present discussion. “Well behaved" includes such
features as piecewise continuity and finite maxima and minima.
The requirement of “‘completeness’ can be illustrated by suggest-
ing that the Cartesian position vector be expressed in terms of i and
j, without using k. This would be impossible because the set of
orthonormal vectors is incomplete. Likewise, if no function is ortho-
normal to every ®,(x), in the space considered, then the system of
$,(x)'s is complete.

The functions X,(x) and X.,(x) are said to be orthogonal (as
opposed to orthonormal) in [a, b] if

-/: ‘h Xa(X)Xu(x) dx = b, ﬁ ' X.2(x) dx (C.9)
They are said to be orthogonal with respect to a weight function p(x) if
ﬁ " POOX.(0X, () A = B f poxA0dx  (C.10)

and they are said to be orthogonal in the Hermitian sense if
ﬁ " XX () dX = b j b X0 dx (c.11)

where X*, is the complex conjugate of X,.. The wave function ¥ is
orthogonal in the Hermitian sense.

STURM-LIOUVILLE SYSTEMS

Proofs of the following theorems on Sturm-Liouville systems
are fairly direct and are not repeated here. The terms eigenvalues
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and eigenfunctions? denote values of the constant \ in Eq. (C.1) and
the corresponding solutions X(x), respectively.

The first theorem (which we shall not state formally) says that
for any finite interval [a, b] and under rather general conditions on
p(x), q(x), and r(x), there exists a discrete set of eigenvalues, A = Ay,
A2, ...y Ay ..., Tor which eigenfunctions, X = X, Xo, ..., X, ...,
exist. This peculiarity of the Sturm-Liouville system is of great
importance in quantum mechanics.

The second theorem says that the eigenfunctions (or in our
case the standing-wave functions) should be orthogonal to one
another

THEOREM  Let p(x),q(x), and r(x) in the Sturm-Liouville system be
continuous in the interval [a, b], and let A, \, be any two distinct
eigenvalues and X,(x), X.(x) be the corresponding eigenfunctions
for which dX,,/dx and dX,/dx are continuous. Then X,(x) and X.(x)
are orthogonal in [a, b] with respect to the weight function, p(x).
Furthermore, if r(a) = 0, the first boundary condition (C.2) can be
dropped from the problem, and if r(b) = 0 the second one can be
dropped. If r(a) = r(b), both conditions can be replaced with the
periodic condition X(a) = X(b); (dX/dx). = (dX/dx).

The last theorem is important because it results in the energy
of quantum systems being real in every case that we encounter.

THEOREM If, in addition to the conditions stated in the preceding
theorem, p(x) does not change sign in [a, b], then the eigenvalues
are all real.

EXAMPLE C.1 In chapter 5 the Schrodinger equation for the
stationary-wave function  of a rigid rotor is solved by separation of
variables. One of the resulting systems is

1 d /. dP\ (2l m?
sin 0 d (5'”8 dﬁ) + (ﬁ_z ~ sin? 9)P =0 Gl

dP dP
P@®=0)=P@O=r) and (E)M N (d_ﬂ)m

Analyze this system from the viewpoint of the Sturm-Liouville

theory.
In this case the given equation is of the Sturm-Liouville form
with r = sin#; A = the energy, e; p = 2/ sin 8/A”; q = —mz,z‘sinnr;

a=20; and b=, Since r(#l =a =0)=r{ = b =1x), the given
boundary conditions are also legitimate members of the Sturm-
Liouville system, in accordance with the last portion of the sec-
ond theorem.

*These words are hybrids of the German eigenwerte and eigenfunktion and
their literal translations, characteristic value and characteristic function.
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Sturm-Liouville system 383

The quantity p = 2/ sin §/f° is always positive; thus the third
theoremrequiresthattheeigenvalues —the energies — mustall be
real. The first theorem says that these energies exist in a discrete
set of values. And the second theorem requires that the solutions
(the Legendre polynomials) must obey the following normalization
condition:

21 [ 20 [~ ,
—J Pr(6)P (6) sin §d) = — o, | [P"(6)]? sin 6 db
[ e Jo

The same comments generally apply to Eq. (5.12) as well, but
the eigenfunctions in this case are sines and cosines and the
eigenvaluesarem = 0, =1, +2,....



values of some
physical constants
and conversions

appendix B factors

A=10"%cm.......
atm =
¢ =2.998 x 10 cm/sec......
e = —1.60210 x 10~° Coulomb
= 4,8030 x 10~'0 esu }

1.01325 x 106 dynes/cm?. ..

_....angstrom unit
-standard atmosphere
..speed of light in a vacuum

electronic charge (e is also used

" “to designate the natural num-

ber, 2.718...)

erg = 1077 Joule = 0.2390 x 107 cal

= 1dyne-cm = 1 g-cm?/sec?

eV =1.6021 x10-"2erg.......... ..

g. = 32.174 ft-Ib,, |bf-sec2}

= unity in cgs system|
h = 6.6256 X 10"-‘4Joule-sec1

= 6.6256 x 10727 erg-sec o
f = 1.05443 x 10~27 erg-sec
hei/k = 1.4388 cm-°K
h2/me? =529 x10%cm........
k = 1.3805 x 10-2% Joule ”K]

= 1.3805 x 10~'¢ erg °K o

electron volt
conversion factor in Newton's

law
.. Planck’s constant

h2w

second radiation constant

first Bohr radius

..Boltzmann’'s constant

385



386 appendix D values of some physical constants and conversions factors

L = (wk)?/3e?

= 2.45 X 10 Watt-ohm/°C2. . . . Lorenz number
m, = 91091 X 10~28 g. ... ... .. ... electron rest mass
m, = 1.67482 x 1024 g. .. ... ... .. neutron rest mass

N, = 6.0225 x 102*molecules/g mole Avogadro’s constant
ohm = 8.9876 cm/sec
R =109,737.3cm~'............... Rydberg's constant
RO = 8.3143 x 107 ergs/g mole-°K
= 0.082054 atm-liter/g mole-°K
= 1544 ft-1b;/Ib,.-mole-°R
= 1.986 Btu/Ib,-mole-°R
(AT).. = 0.28978 cm-°K]
= 5215.6 u-°R
o = 5.6697 x 105 erg/cm?-sec-°K*
= 1.714 x 10~° Btu/ft2-hr-°Rp4

.ideal gas constant

Wien's displacement constant

] .Stefan-Boltzmann constant



appendix K <ome useful formulas

1. Integrals

(@

n+lam>0

f xe— ax)m dx — m _
0

man""'] .

The following special cases, for m =2, are of particular
relevance:

(fn+1
- (57) +;
fo xre e x dx = - _26”"1 - = ?a forn =10

forn =1
~—  forn=2
5oa forn =3

] xgax dx = |2 l xeedx  forn=0,24,...
Jo
0 forn=1,35,...
387



388 appendix E some useful formulas

(b) The gamma function, I'(n) zf

identities can be proved for the gamma function:

I'(n + 1) = nI'(n)

I'(n + 1) = n!
r)=r@ =1
I'th) == T3

)

]

= \';(2

when n is a positive integer

x—le=x dx. The following

(c) The error function, erf (x) = i_-/t et dt. The error func-
)

VT

tion does not have an explicit solution. Numerical values of

erf (x) are given as a function of x in Table E.1.

TABLE E.1 Values of the Error Function

X erf(x) X erf(x) X erf(x)

0 0 0.70 0.677801 1.8 0.989091
0.05 0.056372 0.75 0.711156 1.9 0.992790
0.10 0.112463 0.80 0.742101 2.0 0.995322
0.15 0.167996 0.85 0.770668 2.1 0.997021
0.20 0.222703 0.90 0.796908 2.2 0.998137
0.25 0.276326 0.95 0.820891 2.3 0.998857
0.30 0.328627 1.0 0.842701 2.4 0.999311
0.35 0.379382 1.1 0.880205 2.5 0.999593
0.40 0.428392 1.2 0.910314 2.6 0.999764
0.45 0.475482 1.3 0.934008 2.7 0.999866
0.50 0.520500 1.4 0.952285 2.8 0.599925
0.55 0.563323 1.5 0.966105 2.9 0.999959
0.60 0.603856 1.6 0.976348 3.0 0.999978
0.65 0.642029 1.7 0.983790

X
(d) The Debye function, D(X) = > f 1/(e* — D] dx, s tabu-
X' Jo

(e)

lated in Table 10.3. A related integral of some interest is the

following:

—— dx

_ L)
=¥

¢(p)

a,p>0

where {(p) is the Riemann zeta function of p[see 2(b)]. Some
special cases of the result fora = 1 are

[" X
0o e—1 6

- N
f X"
0o ef—1

r

dx = 2{(3) = 2.404114
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T X 4
[ o o—1% 15
2. Series

(a) The binomial expansion is

= n(n — 1) __nt__
(40 =14 nx + ==X e

and

X e

This series contains a finite number of terms for n = a posi-
tive integer. If n is a positive noninteger, it converges for
x2 < 1. If nis a negative noninteger, it converges for x2 < 1.

(b) The zeta function is ((a): Z i~“ This function is related

i=1

to the integral given in Sec. 1(e). Some values of {(a) are:

a {(@)
1 ®
2 /6
3 1.202057
4 x4/90
5 1.036928
6 76/945
7 1.008349
8 8,/9450

(c) Some transcendental functions (valid for all finite x unless
noted otherwise) are

x3 x5 xz  xt

sinx=x--3-!-+a—--- cosx=1—é—!+m—---
2 = n
e =1tx+y =D
: n=0
In(1+ x) = x__x_‘_+_x_3_x_4_” x2<1 and x=1
- 2 "3 4 N
. 3 5 x2 x4
smhx=x-+-%+§!—+~- coshx—1+2‘+4l+---
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Anharmonic vibration, 134, 169, 175-178
Apse, 340-341
Averages
ensemble, 37
local, 37
molecular, 37-39
Avogadro’s number, 31, 386

Balmer series, 119
Barometric pressure formula, 77-79, 133, 369
Bernoulli equation, 52
Binary encounter
mechanics of, 338-339
statistics of, 341-344
Binomial expansion, 389
Blackbody radiation, 82-94
Bohr's theory of hydrogen atom, 119-121
Boltzmann constant, 43, 66-67

Boltzmann's equation, 334-338
method of solution, 362-369

Boltzons, 138, 140-141

Bonds, types in crystals, 281-282

Bose-Einstein statistics, 92, 135-143
distribution, 138
thermodynamic probability. 136

Bosons, 138

Boyle's law, 7, 28, 42

Brownian movement, 233

Buckingham potential, 253-260

Callen's formulation of thermodynamics, 6,
9-23

Caloric theory, 4-5

Carnot cycle, 43, 83

Cell theories, 284, 297-299

Cells in crystalline solids, 278-281

391
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Centrifugal stretching, 169, 175-178
Characteristic temperature

of diatomic gases, 178

of dissociation, 199, 203

of electron, 165

of ionization, 205

of nuclear spin, 165

of rotation, 129, 177-178

of translation, 125, 178

of vibration, 96, 127, 177-178
Charles's law, 28
Chemical potential, 13, 143

for ideal gas mixtures, 187, 193
Classical theory of specific heats, 94-95
Classical thermodynamics, 9-22
Cluster integrals, 244
Collision, 28-29

cross-section, 305

frequency, 305

integrals, 336, 338-345

invariant, 346
Communal entropy, 297-298
Compressibility factor, 22, 231

for gases, 270-271

for liquids, 299, 300

critical values, 252-253
Compressibility, volume, 288, 294
Configuration integral, 243-247
Conjugate variables, 14
Conservation of energy, 360-361
Conservation of mass, 191, 357
Conservation of momentum, 358-360
Continuity equation, 356-358
Conversion factors, 385-386
Correspondence principle, 121-123

Corresponding states, law of, 251-252, 321-323

Applications, 269-275
Coulomb's law, 117, 257
Covolume, 249
Critical state data, 253

molecular, 275

Dalton's law, 184, 186
Davisson-Germer experiment, 98-99
de Broglie relations, 97-98

Debye approximation, 287-292
Debye equation of state, 292-293
Debye function, 290, 388

Debye temperature, 289-290
Debye’s theory of specific heats, 156, 289
Defects in crystals, 282-283
Degeneracy, 108, 111
Degenerate ideal gas, 144-147
Degree of freedom, 17, 73
Degree of reaction, 198
Dense fluids, 241
Diatomic gases, 168-179
Diffusion coefficient, 23
Boltzmann-Enskog theory of, 367-368
mean-free-path theory, 314-317
more exact formulas, 321
mutual, 316
self, 316
tabulated data, 316
Diffusion velocity, 356
Dilute gases (see also, ideal gases), 29
Dipole, 258
Dirac delta function, 218
Disorder number, 63
Dispersion relation, 102
Dispersion, relative, 235
Dissociating gases, 199-204
Dissociation energy, 168-169

Dissociation of a diatomic molecule, 168-171

Distribution function, 33-36
Maxwell's (see Maxwell distribution)
molecular, 36-39
momentum, 49-50
speed, 47
Dulong-Petit law, 94-95

Effusion, 53
Eigenfunctions, 108, 382-383
Eigenvalues, 107-108, 381-383

for the rigid rotor, 114

relation to quantum states, 107-108
Einstein condensation, 147-148

Einstein theory of specific heats, 95-96,

283-286
Electric intensity, 85
Electrical conductivity, 151, 325-330
Electron gas, 151-158
Electronic partition function, 165
Electronic parameters of metals, 328
Electrons in a hydrogen atom, 119-123
Emissive power, 83



index 393

Emissivity, 330-331

Energy
measurability of, 10
microscopic relation, 69
modes of storage, 73
of reaction, 191

Flux, 40
energy, 23, 360-361
mass, 23, 40, 51-52, 357
momentum, 40-42, 359
of molecules, 50-52
Fourier's law, 23, 311

Energy density of radiation, 21, 82-83, 91, 149 Free electron, 151-158
Energy operator in quantum mechanics, 105 Free energy change of reaction, 196
Ensemble Free particle in a box, 109-111, 124-127

canonical, 221-227 Free path (see also, mean free path), 306-307

concept, 211-216

grand canonical, 227-233

microcanonical, 217-220

summary of kinds, 238
Enthalpy, 20
Enthalpy defect, 272-274
Entropy, 11

absolute, 167-168

microscopic meaning, 65-67

of mixing, 67, 187-190
Equal a priori probabilities, 59, 349
Equation of change, 354-355
Equations of state, 17

of gases, 247-248

for radiant energy, 22

for solids, 292-296
Equilibrium constant, 194-197
Equipartition of energy, 72-77
Ergodic hypothesis, 212-214, 334
Error function, 388
Eucken formula, 313-314, 334
Euler equations, 18-19
Extensive property, 10, 17

Fermat's principle of least time, 97
Fermi-Dirac statistics, 135-143
distribution, 139
thermodynamic probability, 137
Fermi level, 154
of metals, 155
relation to electron velocity, 326
Fermions, 139
Fick's law, 23, 368
Fluctuations, 233-237
of density, 235-237
of energy, 234-235
of pressure, 235

Fluid mechanics, equations of, 354-361

Free volume, 297-298
Frequency of vibration, 89
angular, 100, 113, 285
Fundamental equation, 13
for blackbody radiation, 21-22, 150
for Debye solids, 288
for dense gases, 243
for diatomic ideal gases, 24
for dissociating gases, 200
for Einstein solids, 285
for lattice vibrations, 286-287
for liquids, 297-298
for monatomic ideal gases, 17, 166
for mixtures, 183-186
for reacting mixtures, 193

Gamma distribution, 158
Gamma function, 371, 388
Gas constant, 29, 43, 386
Gaussian (see normal distribution)
Gibbs, J. W., 213
Gibbs-Duhem equations, 18
Gibbs function, 20

Gibb's paradox, 67, 187-190
Gibb's phase rule, 17

Ground state, 113, 165, 190-192
Group velocity, 101

Griineisen constant, 293-294
Gruneisen relation, 293-294

Hamiltonian, 105, 131

Hamilton's principle, 97

Harmonic oscillator, 111, 127

Heat of reaction, 196-197

Heisenberg uncertainty principle,
102-104
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Helmholtz function, 20
for radiant energy, 22
microscopic relation, 69-70
Hermite equation, 113
Hermite polynomials, 113
Hole theories, 299
H-theorem, 346-354
Huygen's principle, 99
Hydrogen atom, 117-123
Hydrogen molecule, 171-175
Ideal gas, 27-29
diatomic, 168-179
dissociating, 199-204
ionizing, 204-208
kinetic description of, 42-44
mixtures, 183-190
monatomic, 165-168
polyatomic, 179-183
reacting, 190-199
Impact parameter, 341
Impurities in solids, 282
Income distribution, 139-140
Indistinguishability, 62
and degeneracy, 135-137
and thermodynamic relations, 162, 164
of atoms in hydrogen molecule, 171
Information theory, 162-163
Intensive property, 10, 13, 17
Interference of scattered electrons, 98-99
Intermolecular forces, 257-260
dispersion, 258
electrostatic, 257
induction, 258
repulsion, 259
Internal energy, 9
Interstitialities in solid, 282
Inverse encounter, 342
lonization energy, 123
degree of, 205
of singly ionized gases, 205-206
Irreversibility, 351
Irreversible thermodynamics, 2, 24
Isolated system, 11

Jacobian of transformation, 343
Joule-Thompson coefficient, 265, 276

Keesom potential, 264

Kinetic hypothesis, 28
Kinetic theory, 3

of dilute gases, 27-55

of transport processes, 303, 333
Kronecker delta, 42

Lagrangian, 97
Lagrangian multipliers, 64
method of, 64, 375-377
Laguerre polynomials, 118
Lambda transition, 148
Lattice theories of liquids, 296-301
Lattice vibrations, 283-292
Le Chatelier and Braun, principle of, 196
Legendre differential equation, 114
Legendre polynomials, 114
as eigenfunctions, 383
Legendre transforms, 19-21
Lennard-Jones-Devonshire (LJD) model, 299
Lennard-Jones potential, 259, 260
constants for, 266
Lewis number, 316-317
Liouville's theorem, 343
Lorenz number, 328-329, 386

Macroscopic, defined, 28
Macrostate, 58-59
Magnetic intensity, 85
Mass action, law of, 193
Mass density, 31
Mass diffusion, 23, 314-317
Mass of a molecule, 31
Massieu function, 21, 164, 221
Matter waves, 96-102
Maxwell distribution, 44-50, 70-72, 351-352, 366
Maxwell relation, 232
Maxwell-Boltzmann statistics, 63-70
Maxwell's equations, 85
Maupertuis's principle of least action, 97
Mean free path, 51, 304-307, 344-346
of electrons, 306, 346
of phonons, 324-326
relation to transport properties, 307-321
Metastable states, 254
Microstate, 58-59, 61-63
Minimum work of separation, 190
Mixing, 67, 187-190
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Mixtures, 183-199, 267

Molecular beam, 48

Molecular chaos, 59, 334, 349-350

Molecular hypothesis, 27

Molecular speed, 30, 47

Molecular velocity, 30, 44-47

Moment of inertia, 180, 182

Momentum of a particle, 30

Momentum operator in quantum mechanics,
105

Monatomic gases, 165-168

Moon's lack of atmosphere, 50

Multiplicative law of probabilities, 123

Naturphilosophie, 5

Navier-Stokes equation, 359
Newton’s law of viscous shear, 23
Nonideal gases (see dense fluids)
Noninteracting point particle, 248, 249
Noninteracting rigid sphere, 248, 249
Normal distribution, 36
Normalization condition, 110, 380
Nuclear partition function, 163
Nuclear spin, 128, 171-175

Number density, 30, 36

Optics, analogy to classical mechanics, 97
Orthogonal functions, 380-381
Ortho-hydrogen, 173-174
Orthonormal set, 380-381
Oscillator, harmonic, 111-113, 127-128
quantum energy levels, 113
partition function, 127-128

Para-hydrogen, 173-174
Partial pressure (see also, Dalton's law), 186
Partition function, 68-70, 123-124
canonical, 223, 242
classical and quantum, 129-131
for Einstein solids, 285
for ideal gases, 77, 163
for lattice vibrations, 286-287
grand canonical, 230
microcanonical, 218
quantum mechanical, 123-124
rotational, 128-129
translational, 124-126
vibrational, 127-128

Pauli exclusion principle, 136, 138, 172
Peculiar velocity, 38
Persistence of energy, 310
Persistence of velocity, 309
Phase integral, 131
Phase space, 31-33
Phase speed, 100
Phonon, 148
gas, 148-151, 287
Photoelectric effect, 157-158
Photon, 96-97
gas, 148-151, 287
Physical constants, values of, 385-386
Planck’s constant, 91, 385
modified, 103, 385
Planck’s theory of radiation, 89-94
Plasma, 204
Poincaré's theorem, 350
Point-center of repulsion, 259, 260
Poisson's ratio, 288
Polarizability, 258, 266
Polarization of electromagnetic waves, 86, 89
Polyatomic gases, 179-183
Position vector, 30
Postulates of macroscopic thermodynamics,
9-13
Potential energy function, 111, 257-269
for a diatomic molecule, 168-169
for dissimilar molecules, 267
for moderately dense gases, 242
for molecular interaction, 249, 260
Prandtl number, 311-314
Pressure, 13
hydrostatic, 40-42
microscopic expression, 69
of ideal gas mixtures, 184, 186
Pseudo-reduced volume, 272

g-Potential, 144

Quantum action, 97

Quantum number, 110, 118
principal, 114, 118

Quantum statistics, 135-159

Radial distribution function, 300
Raindrop distribution, 158
Random phases, principle of, 214
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Rayleigh-Jeans law, 85-88

Reacting mixtures, 190-199

Real gases (see dense fluids)

Reduced variables, 252

Relaxation time, 326

Rigid rotor, 113-115, 128-129
harmonic-oscillator approximation, 170
partition function, 128-129
quantum energy levels, 114

Rotational energy contribution, 74

Rotation-vibration coupling, 169, 175-178

Rydberg constant, 119, 386

Sackur-Tetrode equation, 166-168
Saha equation, 206-208
Scattering, 325, 326
Schmidt number, 316, 317
Schrodinger equation, 105-106

as a Sturm-Liouville system, 382

solutions, 109-116
Second virial coefficient, 247-250, 260-269

tabulated values, 268
Significant structures, theory of, 299
Solids, structure of, 278-283
Specific heats

for radiation, 22

for solids, 94-96

of an anharmonic oscillator, 134

of electron gases, 156-157

of ideal gases, 73

of van der Waals gases, 255
Speed

distribution, 47

mean, 38, 54

molecular, 30

most probable, 47, 53

of light, 82, 385

of sound, 43

root-mean-square, 43
Spin degeneracy of electrons, 152
Spring constant, 111, 175
Square-well potential, 259, 260
Standard deviation, 36
Statistical hypothesis, 27

Statistical thermodynamics, history of, 6-8

Steepest descents, method of, 219
Stefan-Boltzmann constant, 82, 91, 94, 386
Stefan-Boltzmann law, 82, 94

Stirling’s approximation, 64, 371-373
Stockmayer potential, 264-267
Stoichiometric coefficients, 194
Stosszahlansatz, 334
Sturm-Liouville system, 108, 379-383
Summation invariant, 346-348
Sutherland potential, 259, 260
Sutherland's formula, 318-319
Symmetry number, 175, 180, 181

Temper, 43
Temperature, 13, 15

kinetic meaning of, 42-44
Thermal conductivity, 23

for dielectric solids, 324-325

for gases, 312, 320-321, 322-323

for liquids, 312

for metals, 151, 325-330

for mixtures, 321

mean-free-path prediction, 310-314
Thermal de Broglie wavelength, 126, 243
Thermal equilibrium, 15-16
Thermal expansion, coefficient of, 294-296
Thermal velocity, 38
Thermodynamic probability, 62-63

for canonical ensemble, 221

for grand canonical ensemble, 227

for indistinguishable particles, 162

for microcanonical ensemble, 217
Thermodynamics, 1-2

first law of, 4-5, 10

history of, 4-8

second law of, 5, 12

third law of, 12, 16
Third virial coefficients, 248, 265, 268-269
Translational energy contribution, 74
Transport of molecular properties, 39-42
Transport properties, 23

of gases, 312

of solids, 323-331
Transport relations, macroscopic, 23-24
Tunnel model, 300
Two-dimensional gases, 52, 55, 80
Two-dimensional radiation, 93, 108
Two-dimensional solids and liquids, 302

Uncertainty relation, 102-104
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Vacancies, 282
Valance repulsions, 259
van der Waals equation, 248-257
Velocity (see Molecular velocity. See also,
Speed)

Vibrational energy contribution, 74-75
Virial coefficients, 248, 268

for mixtures, 269

second (see second virial coefficient)
Virial equations of state, 247-248
Viscosity, 23

bulk, 359

for gases, 312, 317-319, 322-324

for liquids, 312

for mixtures, 320

mean-free-path prediction, 309-310
Wave characteristics of matter, 96-102
Wave equation, 107
Wave function, 106

for a diatomic molecule, 171-173
Wiedemann and Franz, law of, 151, 328
Wien's distribution law, 83
Work function, 155, 157
Worm model, 300

Zeta function of Riemann, 92





